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Abstract 

Background:  Inflammation and long noncoding RNAs (lncRNAs) are gradually becoming important in the develop-
ment of bladder cancer (BC). Nevertheless, the potential of inflammatory response-related lncRNAs (IRRlncRNAs) as a 
prognostic signature remains unexplored in BC.

Methods:  The Cancer Genome Atlas (TCGA) provided RNA expression profiles and clinical information of BC sam-
ples, and GSEA Molecular Signatures database provided 1171 inflammation-related genes. IRRlncRNAs were identi-
fied using Pearson correlation analysis. After that, consensus clustering was performed to form molecular subtypes. 
After performing least absolute shrinkage and selection operator (LASSO) and multivariate Cox regression analyses, a 
risk model constructed based on the prognostic IRRlncRNAs was validated in an independent cohort. Kaplan–Meier 
(KM) analysis, univariate and multivariate Cox regression, clinical stratification analysis, and time-dependent receiver 
operating characteristic (ROC) curves were utilized to assess clinical effectiveness and accuracy of the risk model. In 
clusters and risk model, functional enrichment was investigated using GSEA and GSVA, and immune cell infiltration 
analysis was demonstrated by ESTIMATE and CIBERSORT analysis.

Results:  A total of 174 prognostic IRRlncRNAs were confirmed, and 406 samples were divided into 2 clusters, with 
cluster 2 having a significantly inferior prognosis. Moreover, cluster 2 exhibited a higher ESTIMATE score, immune 
infiltration, and PD-L1 expression, with close relationships with the inflammatory response. Further, 12 IRRlncRNAs 
were identified and applied to construct the risk model and divide BC samples into low-risk and high-risk groups suc-
cessfully. KM, ROC, and clinical stratification analysis demonstrated that the risk model performed well in predicting 
prognosis. The risk score was identified as an independently significant indicator, enriched in immune, cell cycle, and 
apoptosis-related pathways, and correlated with 9 immune cells.

Conclusion:  We developed an inflammatory response-related subtypes and steady prognostic risk model based on 
12 IRRlncRNAs, which was valuable for individual prognostic prediction and stratification and outfitted new insight 
into inflammatory response in BC.
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Introduction
Bladder cancer (BC) is the ninth most universal malig-
nancy, with nearly 550,000 cases recorded in 2018, 
and ranks fourteenth in cancer deaths worldwide 
[1]. Urothelial carcinoma, the common type of BC, 
mainly consists of two different subtypes according 
to the depth of tumor invasion, namely, nonmuscle-
invasive bladder cancer (NMIBC, 70%) and muscle-
invasive bladder cancer (MIBC, 20%) [2]. Although 
NMIBC tends to have a great life expectancy, it fre-
quently recurs (70-80%) and even progresses to MIBC 
[3]. Facing to future work for therapy of BC, though 
cisplatin-based chemotherapy is still capital manner, 
the occurrence of immune checkpoint inhibitors and 
antiangiogenic therapy further impulse the develop-
ment of targeted therapy by probing new bio-targets 
[2]. Therefore, developing a prognostic risk model for 
bladder cancer patients at the molecular level is critical 
for assessing risk, identifying novel potential biomark-
ers, and implementing therapy interventions quickly 
to improve curative effects and extend patient survival 
time.

Inflammation has an important protective response 
by removing stimulants such as alien microorganisms 
and healing tissue damage [4]. Unfortunately, con-
tinuous inflammatory stimulation can lead to chronic 
inflammation, poor tissue regeneration, tumorigen-
esis, and metastasis [5]. Pro-inflammatory cytokines 
are released by tumor-associated inflammatory cells, 
such as IL-1, IL-6, TNF, and VEGF, which further influ-
ences the tumor progression and metastasis [6, 7]. 
Besides, inflammation has an osculating link with the 
development and malignant progression of most can-
cers by regulating DNA damage and repair, p53 muta-
tion, chemokines, and soon [8]. Acute inflammatory 
response induced by radiotherapy tends to induce an 
anti-tumor immune response [9]. In contrast, chronic 
inflammation usually increases tumor occurrence, 
development, and metastasis by creating a tumor-
friendly microenvironment including immunosup-
pression and angiogenesis [10]. In particular, chronic 
inflammation can attract a range of immunosuppres-
sive cells, including regulatory T-cells (Tregs), pro-
tumorigenic tumor-associated macrophages (TAMs), 
and myeloid-derived suppressor cells, to develop an 
immunosuppressive tumor microenvironment (TME) 
and speed up the formation of tumor [10, 11]. In BC 
patients, chronic inflammation is one of the risk fac-
tors contributing to the tumorigenesis of BC [12]. 

Increasing pieces of evidence have suggested that 
chronic inflammation is associated with bladder cancer, 
and regulating the expression of specific inflammation-
related genes can suppress the progression of BC [13–
15]. Moreover, predictive significance has been proven 
for indicators of inflammatory response in BC. C-reac-
tive protein has been shown to be a predictive factor for 
BC patients’ survival by Hilmy M et al [16]. In patients 
with NMIBC, the lymphocyte-monocyte ratio before 
surgery is an important predictor of recurrence and 
development [17]. As a result, a greater knowledge of 
the link between inflammation and tumor development 
might aid the study of novel tumor-fighting therapies in 
BC patients.

LncRNAs participate in the regulation of gene expres-
sion via various mechanisms, including interacting with 
DNA, RNA, or proteins. Moreover, lncRNAs mediate 
translation control, cell cycle regulation, and apopto-
sis [18]. Previous research has suggested that lncRNAs 
may influence the immunological microenvironment 
of tumors, tumor development, metastasis, and recur-
rence [19]. And lncRNAs serve as a new component of 
the innate immune response and intervene in inflam-
matory signaling [20]. Abnormal lncRNA expression 
plays a role in carcinogenesis by interfering with bio-
logical processes, such as the redirection of chromatin 
remodeling complexes [21]. To date, the mechanisms 
of regulating lncRNAs to affect the development of BC 
have been explored generally in more fields, such as 
inflammation, self-renewal, and chemoresistance [22, 
23]. However, the potential value of lncRNAs concern-
ing inflammation in BC prognosis and treatment has 
not been made clear until now.

In this study, we retrieved BC patient transcrip-
tome profiles and clinicopathological data from 
publicly accessible databases (TCGA), and inflam-
matory response-related lncRNAs (IRRlncRNAs) 
were screened out by using a series of bioinformatics 
methods. We employed these IRRlncRNAs to estab-
lish inflammatory response-related subtypes based 
on consensus clustering in BC patients. In addition, 
after performing Cox regression analysis, candidate 
IRRlncRNAs were identified to develop a prognostic 
risk model. Relationships between subtypes, or risk 
scores and clinicopathological characteristics, function 
enrichment analysis, and immune microenvironment 
analysis were investigated further. In summary, the 
current study may contribute to the exploration of BC 
prognostic IRRlncRNAs and shed new insights into the 
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potential molecular mechanisms between BC develop-
ment and inflammatory response.

Materials and methods
Data extraction and processing
The specific research process was shown in Additional 
file 1. We accessed the RNA expression profile and clini-
cal information of 433 BC samples from the TCGA data-
base (https://​ocg.​cancer.​gov/​progr​ams/​TCGA, accessed 
on 18 September 2021), which consists of 414 BC sam-
ples and 19 normal samples. Inflammatory response-
related genes were retrieved from 4 inflammatory 
response-related gene sets in the Gene Set Enrichment 
Analysis (GSEA) Molecular Signatures database, includ-
ing HP_ABNORMAL_INFLAMMATORY_RESPONSE, 
WP_INFL AMMATORY_RESPONSE_PATHWAY, 
HALLMARK_INFLAMMATORY_RESPONSE, and 
MODULE_76 (http://​www.​gsea-​msigdb.​org/​gsea/​
msigdb/​search.​jsp, accessed on 18 September 2021). The 
additional information on inflammatory response-related 
genes was saved in Additional file 2.

Identification of differentially expressed prognostic 
IRRlncRNAs
Pearson’s correlation analysis was executed between 
inflammatory response-related genes and all lncRNAs to 
identify IRRlncRNAs, with the standard of |R| > 0.5 and 
P < 0.01. Differentially expressed IRRlncRNAs between 
tumor and normal samples were obtained by using the 
“limma” R package with |log (Fold Change) | > 1 and 
false discovery rate (FDR) < 0.05. Then, prognostic IRRl-
ncRNAs with P < 0.05 were discerned by univariate Cox 
regression analysis using the R package “survival”.

Consensus clustering
Founded on the expression profile of prognostic IRRl-
ncRNAs, the “ConsensusClusterPlus” R package was 
adopted to cluster BC samples into molecular subtypes. 
We utilized the “Partitioning Around Medoids” cluster-
ing algorithm, with each sampling time 85% and repeated 
one thousand times. The optimum cluster number -- k 
value was chosen through the cumulative distribution 
function (CDF) curves and the consensus matrices, 
which were determined visually, and verified by introduc-
ing the proportion of ambiguously clustered pairs (PAC) 
analysis [24]. Besides, it was also assessed the perfor-
mance by the t-distributed stochastic neighbor embed-
ding (t-SNE) method.

Clinical significance, enrichment process, and immune 
infiltrating analysis of molecular subtypes
Kaplan–Meier (KM) survival analysis was utilized to cal-
culate differences in overall survival (OS) of BC patients 

between molecular subtypes. Correlation and distribu-
tion between the clinicopathologic characteristics and 
different clusters were shown by a heatmap, including 
age, grade, smoking status, and stage.

To explore the potential biological processes and 
pathways of the two clusters, gene set variation analysis 
(GSVA) was executed by the “GSVA” R package, includ-
ing Gene Ontology (GO) and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) gene sets [25]. Subse-
quently, GSEA was further executed on hallmark gene 
sets among subtypes in the GSEA software.

To study the influence of IRRlncRNAs on the TME of 
BC, the ESTIMATE algorithm was used to evaluate the 
ESTIMATE score, immune score, and stromal score of 
each sample by functioning the R package “ESTIMATE” 
[26]. Next, we adopted CIBERSORT algorithms to gauge 
and compare the abundance and difference of 22 differ-
ent immune cells in the inflammatory response-related 
subtypes [27].

Construction and validation of the risk model based 
on prognostic IRRlncRNAs
After removing incomplete survival information sam-
ples, 406 BC samples were randomly dismantled into 
two groups: the training and test cohort at 1:1. The clini-
cal characteristics were presented in Table  1. Based on 
prognostic IRRlncRNAs, LASSO analysis, which can 
avoid overfitting and reduce the multicollinearity effect 
among IRRlncRNAs, was performed with the “glmnet” 
R package to minimize IRRlncRNAs by making the coef-
ficients of irrelevant IRRlncRNAs comparatively zero 
and excluded in the training cohort. The optimal pen-
alty parameter for LASSO was ascertained based on 
the minimum partial likelihood deviance calculated by 
the ten-fold cross-validation method. Subsequently, a 
multivariate Cox regression, using these IRRlncRNAs 
determined by LASSO analysis and the lowest value of 
the Akaike information criterion (AIC), was applied to 
sift optimal risk IRRlncRNAs as novel signatures and 
construct a risk model. In addition, stepwise regression 
with both directions was used to find the minimum AIC 
value in the multivariate Cox regression. In the LASSO 
and multivariate Cox regression, independent variables 
were the expression matrix of candidate IRRlncRNAs, 
while response variables were the OS and status of BC 
patients. The risk score of each sample was determined 
by the calculation formula as follows:  risk score =  ∑ 
(Coefn * Expn).

The regression coefficient of each computed lncRNA 
is Coefn, and the expression level of each computed 
lncRNA is Expn. According to risk scores, BC samples 
were split into “high-risk” and “low-risk” groups based 
on the medium of risk score as the cut-off point in the 

https://ocg.cancer.gov/programs/TCGA
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training cohort and test cohort. KM method also served 
to assess the prognostic value of the two groups by the 
“survminer” R package. The performance of the risk 
model was proven by time-dependent receiver operating 
characteristic (ROC) curves of 1-, 3- and 5-year survival 
rates via the “survivalROC” package.

Clinical stratification analysis of the IRRlncRNA signature
Univariate and multivariate Cox regression was utilized 
to explore provided the risk score constructed by the 
prognostic IRRlncRNAs can serve as an independent 
prognostic factor compared with age, smoked, stage, gen-
der, and risk score as included factors. Further, we con-
ducted a stratified analysis between the risk model and 
different subgroups with various clinical traits. Specifi-
cally, the differences of risk scores were explored in dif-
ferent clinical subgroups using the Wilcoxon test and the 

“ggpubr” R package. KM survival analysis was applied on 
investigating the OS distribution in risk groups of clinical 
stratified variables including smoked history, stage (I-II, 
III-IV), age (≤65, >65), clustering subtypes, sex, T stage 
(T1-2, T3-4), M stage (M0, M1), and N stage (N0, N1–3).

Functional enrichment and immune cell infiltration 
analysis with risk scores
To reveal the potential biological processes and cause for 
survival division between the two risk groups, we con-
ducted GSEA founded on the GO function data set (c5.
go.v7.4.symbols) and KEGG pathway data set (c2.cp.kegg.
v7.4.symbols) that were downloaded on November 2021 
from GSEA database. Furthermore, immune cell infiltra-
tion based on CIBERSORT was further probed for corre-
lation with risk scores by Spearman’s test with p < 0.05 in 
order to evaluate the changes of immune cells in inflam-
matory response-related risk scores of BC patients.

Statistical analyses
The comparison of baseline characteristics between the 
training and test cohorts was run by the Chi-square test 
and Fisher’s exact probability test in SPSS 25. And the 
Wilcoxon test was used to compare differences in risk 
scores among the clinical characteristic groups. To cre-
ate survival curves, the KM plot and the Log-rank test 
were performed to assess statistically significant differ-
ences. Statistical analyses were performed by utilizing R 
version 4.1.0, and statistical significance was assumed at a 
two-sided p value of less than 0.05. GSEA was run in the 
GSEA software v4.1.0, and the enriched gene sets with p 
< 0.05 and FDR < 0.25 were included in the analysis.

Results
Screening of IRRlncRNAs in BC
From the GSEA Molecular Signatures database, 1171 
inflammatory response-related genes were identified in 
total (Additional file 2). Then, we obtained 1972 IRRlncR-
NAs linked with the inflammatory response through the 
coregulation correlation test (Additional file 3). In tumor 
(n=414) and normal (n=19) samples, 1086 IRRlncRNAs 
were differentially expressed, with 336 upregulated lncR-
NAs and 750 downregulated lncRNAs (Additional file 4). 
Furthermore, univariate Cox regression was applied to 
resolve whether 1086 IRRlncRNAs were related to prog-
nosis in BC patients with OS. Among them, 174 IRRl-
ncRNAs were associated with prognosis and included in 
the following analysis (P < 0.05; Additional file 5).

Consensus clustering to identify subtypes
To identify different inflammatory response-related 
subtypes in BC samples, consensus clustering based on 
174 prognostic IRRlncRNAs was undertaken (k = 2 to 

Table 1  Baseline characteristics of patients with BC

Covariates Total Train Test chi P

Age

  <=65 160(39.41%) 83(40.69%) 77(38.12%) 0.280 0.597

  >65 246(60.59%) 121(59.31%) 125(61.88%)

Gender

  Female 107(26.35%) 62(30.39%) 45(22.28%) 3.444 0.063

  Male 299(73.65%) 142(69.61%) 157(77.72%)

Grade

  High 383(94.33%) 191(93.63%) 192(95.05%) 0.780 0.377

  Low 20(4.93%) 12(5.88%) 8(3.96%)

  unknow 3(0.74%) 1(0.49%) 2(0.99%)

Smoked

  NO 109(26.85%) 63(30.88%) 46(22.77%) 3.790 0.052

  YES 284(69.95%) 133(65.2%) 151(74.75%)

  unknow 13(3.2%) 8(3.92%) 5(2.48%)

Stage

  I-II 131(32.27%) 68(33.33%) 63(31.19%) 0.214 0.644

  III-IV 273(67.24%) 135(66.18%) 138(68.32%)

  unknow 2(0.49%) 1(0.49%) 1(0.5%)

T

  T0/X 2(0.49%) 0(0%) 2(0.99%) 2.683 0.221

  T1-2 121(29.8%) 66(32.35%) 55(27.23%)

  T3-4 251(61.82%) 123(60.29%) 128(63.37%)

  unknow 32(7.88%) 15(7.35%) 17(8.42%)

M

  M0/X 392(96.55%) 196(96.08%) 196(97.03%) 0.088 0.766

  M1 11(2.71%) 6(2.94%) 5(2.48%)

  unknow 3(0.74%) 2(0.98%) 1(0.5%)

N

  N0/X 272(67%) 140(68.63%) 132(65.35%) 0.507 0.477

  N1-3 128(31.53%) 61(29.9%) 67(33.17%)

  unknow 6(1.48%) 3(1.47%) 3(1.49%)
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9). When k = 2 was carried out, the CDF curve of the 
consensus index score had a highly steady trend and the 
flattest slope, and the interference between the 2 clusters 
was considerably small (Fig. 1A-B). And k = 2 also was 
verified as the optimal cluster number by PAC method. 
Therefore, 406 BC samples, in which survival informa-
tion was available, were subsequently categorized into 
two subtypes – cluster 1 (n = 245) and cluster 2 (n = 
161) (Fig.  1B), and then were visualized successfully 
by performing t-SNE (Fig.  1C). Kaplan–Meier survival 
analysis in our study revealed that samples in cluster 1 
had a superior prognosis (P < 0.001; Fig.  1D). Further-
more, there were substantial differences in clinicopatho-
logic features, including tumor grade, stage, T stage (all 
P < 0.001), and N stage (P < 0.05), between cluster 1 and 
cluster 2 (Fig. 1E). Specifically, in comparison to cluster 

1, cluster 2 has a higher proportion in high grade, III-IV 
stage, T3-T4 stage, and N1-N3 stage of BC patients. In 
conclusion, inflammatory response-related subtypes have 
a significant correlation with the clinical heterogeneity of 
BC samples.

More active gene set enrichments in cluster 2
To visualize the precise signaling pathways and biologi-
cal functions affected by IRRlncRNAs of the two clusters, 
we further performed GSVA-GO, GSVA-KEGG, and 
GSEA-Hallmark analyses. We found that chondroitin 
and collagen metabolic processes, positive regulation of 
epithelial to mesenchymal transition (EMT), and extra-
cellular matrix disassembly were significantly enriched 
in cluster 2 (Fig.  2A). In cluster 2, pathways such as 
focal adhesion, calcium signaling pathway, extracellular 
matrix protein (ECM) receptor interaction, JAK-STAT 

Fig. 1  Distribution of clinicopathologic features and prognosis among the two clusters. A CDF curves for cluster number k = 2-9. Y axis is CDF 
value, and X axis is consensus index. B Consensus clustering yielded a color-coded heatmap matching the consensus matrix of the two subtypes. 
C t-SNE revealed two unique distribution modes between the two subtypes. D Kaplan–Meier analysis of samples in two clusters. E Heatmap of the 
expression of IRRlncRNAs and clinical characteristics among the two subtypes. Each row of heatmap is each IRRlncRNA, and each column is each BC 
sample
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Fig. 2  Gene set enrichment analysis in clusters 1 and 2. A-B Heatmap of the enrichment analysis using the GSVA algorithm based on GO (A) and 
KEGG (B) gene sets. C GSEA based on hallmark gene sets
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signaling pathway, chemokine signaling pathway, leuko-
cyte transendothelial migration, and other diseases were 
differentially elevated (Fig.  2B). Furthermore, the GSEA 
results revealed that signaling pathways such as the 
inflammatory response, apoptosis, hypoxia, p53 pathway, 
and sex hormone response were massively concentrated 
in cluster 2 (Fig.  2C). In summary, cluster 2 was more 
prone to the inflammatory response in BC patients.

Immune infiltration analysis in clusters
Some relationships between immunity and IRRlncR-
NAs need to be probed to furnish some potential views 
in immunotherapy probably. Cluster 2 had a higher 
immune score, stromal score, and ESTIMATE score 
(all P < 0.0001; Fig.  3A-C). The expression of PD-L1 in 
normal and tumor samples did not differ significantly 
(Fig. 3D), while in comparison to cluster 1, cluster 2 had 
PD-L1 expression increased (P < 0.001; Fig. 3E). Cluster 
1 exhibited a greater degree of plasma cells, CD8 T cells, 
follicular helper T cells, Tregs, and activated dendritic 
cells, while higher M0 macrophage and M2 macrophage 
levels were observed in cluster 2 (all P < 0.05; Fig.  3F). 
Taken together, cluster 2 may be related to chronic 
inflammation.

Construction and evaluation of the risk model
The above analysis indicated that there are subtypes 
and regulations based on inflammatory response in BC. 
Therefore, we constructed a risk score model to further 
study the prognostic value of IRRlncRNAs in BC. First, 
we randomly separated 406 BC samples into two cohorts: 
training (n = 204) and test (n = 202). There were none of 
statistically significant differences in age, grade, smoked 
history, gender, stage, or TMN stage between the train-
ing and test cohorts (P > 0.05; Table  1). Further, based 
on 174 prognostic IRRlncRNAs, LASSO regression was 
utilized to reduce the risk of overfitting, and 24 IRRl-
ncRNAs were chosen for further inquiry (Fig.  4A-B). 
After that, multivariate Cox regression was performed 
to reckon respective coefficients, resulting in the selec-
tion of 12 IRRlncRNAs as risk signatures to develop a 
risk score model in BC patients (Additional file  6). The 
following formula was applied to calculate the risk score 
for BC samples. Risk score = 0.01929269 * expr (MAFG-
DT) - 0.486500672 * expr (Z98200.2) + 0.15713061 * expr 
(LYPLAL1-AS1) + 0.499232227 * expr (AL031429.2) 
- 0.347294883 * expr (AC008750.1) + 0.358586976 * 
expr (LINC02207) - 0.263574577 * expr (AL139041.1) 
+ 0.630116014 * expr (AL049775.1) + 0.01165779 * 
expr (AC099850.4) + 0.071137074 * expr (AL591806.1) 
- 0.213999812 * expr (ETV7-AS1) + 0.317714659 * expr 
(AC009292.1).

Based on the medium of risk scores, samples from 
the training and test cohorts were dismantled into two 
groups: low-risk and high-risk. And the OS of BC sam-
ples in the high-risk group was significantly poorer than 
that in the low-risk group in the training cohort, which 
was also consistent in the test cohort (both P < 0.001; 
Fig. 4C-D). Time-dependent ROC demonstrated that the 
AUCs of 1, 3, and 5 years were 0.744, 0.814, and 0.840, 
respectively, in the training cohort and 0.693, 0.697, and 
0.750, respectively, in the test cohort (Fig. 4E-F). There-
fore, the risk model can play an effective role in evaluat-
ing the OS of BC patients. Afterward, we computed the 
risk score of each sample and ranked them by plotting 
the risk curves (Fig.  4G-H). The scatter plot visualized 
the relationship between risk scores and survival status of 
samples in the two cohorts (Fig. 4I-J). The higher the risk 
scores are, the more samples die easily. Besides, the dis-
tribution of 12 IRRlncRNAs expression between two risk 
groups was exhibited in Fig. 4K-L.

Clinical stratification analysis of risk scores based 
on the IRRlncRNA signature
To investigate whether the risk model based on 12 IRRl-
ncRNAs was an independent factor in the prognostic 
prediction of BC samples, we used univariate and mul-
tivariate Cox regression with age, smoked status, stage, 
gender, and risk score as predictive factors (Table  2). 
Univariate Cox regression indicated that the risk score 
was related to the OS and was verified in both the train-
ing and test cohorts (both P < 0.001). The results of the 
multivariate analysis suggested that the risk score was an 
independent predictor of OS in both the training (HR: 
2.559, 95% CI: 2.011-3.256, P < 0.001) and test cohorts 
(HR: 1.539, 95% CI: 1.239-1.912, P < 0.001).

Further, it was explored that the discrepancy of risk 
scores in different clinical characteristics. Cluster 2, stage 
III-IV, and high-grade samples had a higher risk score (all 
P < 0.05), whereas there was no significant link between 
risk score and age, gender, or smoked (all P > 0.05; Fig. 5). 
Moreover, the relationship between the risk groups and 
OS was probed to test the prognostic performance of the 
risk model in different clinical subgroups of BC patients. 
Samples with a low-risk score had a longer OS than 
those with a high-risk score in multiple categories, such 
as smoking, tumor, stage, sex, T stage, and cluster (all P 
< 0.05; Fig. 6A-F). In addition, in subgroups of M and N 
stages, the OS of M1 and N1-3 BC samples had no statis-
tical significance for those with low-risk scores compared 
with those with high-risk scores (P > 0.05; Figs. 6G-H).

Signaling pathways in high‑ and low‑risk groups
To elucidate the difference in biological function between 
the two risk groups, we conducted GSEA based on GO 
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and KEGG sets. Immune-related pathways, including 
immunological memory process, T-cell receptor com-
plex, and antigen processing and presentation of endog-
enous antigen were enriched in the low-risk group, while 

EMT was more abundant in the high-risk group (Fig. 7A). 
Nevertheless, the P53 signaling pathway, MAPK signal-
ing pathway, and WNT signaling pathway were signifi-
cantly enriched in the high-risk group (Fig. 7B).

Fig. 3  The divisions of inflammatory response-related clusters in the TME of BC. A-C The contrast of ESTIMATEScores, StromalScores, and 
ImmuneScores between two clusters. D-E Box plot of the PD-L1 expression differences (D: tumor and normal samples; E: cluster 1 and cluster 2). F 
The infiltration analysis of 22 immune cells in clusters
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Fig. 4  Development of a prognostic risk model based on IRRlncRNAs for BC patients. A-B Diagram for LASSO regression analysis based on 
prognostic IRRlncRNAs. C-D Kaplan–Meier plot revealed a notable difference in prognosis between the high- and low- risk groups (C: Training 
cohort; D: Test cohort). E-F Time-dependent ROC analysis represented 1-, 3-, and 5-year predictions based on 12 IRRlncRNAs risk model in BC 
samples (E: Training cohort; F: Test cohort). G-H The risk score curve (G: Training cohort; H: Test cohort). I-J Scatter plot of the relationship between 
survival status and risk score of each sample (I: Training cohort; J: Test cohort). Red dots mean the dead samples, while the green dots mean the 
alive samples. K-L Heatmap revealing the distribution of 12 IRRlncRNAs expression levels in risk groups (K: Training cohort; L: Test cohort)
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Correlation of the risk score and immune cell infiltration
Since the above GSEA-GO analysis result was con-
nected to immune-related pathways, Spearman cor-
relation analysis was performed on the infiltration 
of various immune cells in BC samples to observe 
whether there was a link between the risk score based 
on the twelve IRRlncRNAs and immune infiltration. 
The risk score was shown to be positively connected 
with the infiltration of M0 and M2 macrophages, 
neutrophils, activated mast cells, and CD4 memory 

resting T cells, whereas follicular helper T cells, CD4 
memory activated T cells, CD8 T cells and Tregs were 
negatively associated with the risk score (all P < 0.05; 
Figs. 8A-I).

Discussion
Bladder cancer is a heterogeneous and strong meta-
static disease, with approximately 170,000 deaths every 
year [27]. According to global cancer statistics in 2018, 
bladder cancer accounts for 3.0% of all newly diagnosed 

Table 2  Independent prognostic analysis of the riskScore and clinicopathological factors in BC patient set

Variable Training cohort Test cohort

Univariate Cox Multivariate Cox Univariate Cox Multivariate Cox

HR 95%CI p HR 95%CI p HR 95%CI p HR 95%CI p

Age 1.028 1.005-1.053 0.019 1.017 0.994-1.040 0.158 1.040 1.018-1.062 <0.001 1.034 1.012-1.057 0.003

Gender Male/Female 1.188 0.728-1.939 0.491 1.245 0.747-2.075 0.400 0.571 0.362-0.899 0.016 0.589 0.372-0.931 0.023

Smoked YES/NO 1.323 0.806-2.171 0.268 0.915 0.538-1.554 0.742 1.170 0.706-1.939 0.542 1.162 0.696-1.939 0.566

Stage I/II/III/IV 2.168 1.585-2.966 <0.001 1.466 1.051-2.045 0.024 1.526 1.179-1.974 0.001 1.361 1.050-1.763 0.020

riskScore 2.834 2.263-3.550 <0.001 2.559 2.011-3.256 <0.001 1.573 1.309-1.809 <0.001 1.539 1.239-1.912 <0.001

Fig. 5  Comparison analysis in risk scores of clinical characteristics. A Cluster. B Stage. C Grade. D Age. E Gender. F Smoked
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cancer cases and 2.1% of all cancer deaths [28]. Recently, 
since high-throughput biological technology has been 
applied to assist in early disease diagnosis and the discov-
ery of therapeutic targets, we are eager to provide a more 
reliable and accurate prognostic risk assessment method 
for BC patients to predict survival and probe potential 
help for improving clinical treatment strategies based on 
the inflammatory response.

For exploring more potential inflammatory response-
related targets and mechanisms in development of 
tumor, similar risk models were successfully constructed 
in many cancers, such as nephroblastoma and blad-
der cancer [29, 30]. Inflammatory diseases are linked to 
lncRNAs, which might be used as biomarkers to diag-
nose inflammatory diseases such as rheumatoid arthri-
tis [31]. Previous studies have mainly focused on urinary 
biomarkers in diagnosis and monitoring, such as urine 
DNA methylation assay, while inflammatory biomarkers 
in the blood have also recently been demonstrated to be 

potential biomarkers in prognosis of BC patients, such 
as plasma fibrinogen and D-dimer [32–34]. Currently, 
a prognostic risk model based on the inflammatory 
response associated with mRNA may effectively distin-
guish BC patients with a good or worse prognosis [30]. 
IRRlncRNAs, on the other hand, have yet to be identi-
fied as predictive markers for BC. In comparison to these 
risk models described above, the risk model of our study 
based on IRRlncRNAs developed offered higher benefits 
in BC patients.

Consensus clustering has been widely performed to 
preliminarily discover more potential molecular subtypes 
in BC, such as clusters of hypoxia response, m6A-related, 
and immune-related [35–37]. Similarly, using consensus 
clustering, our research effectively demonstrated that 
there are inflammatory subtypes based on IRRlncRNAs 
in BC patients. Our study hopes to determine potential 
reasons and mechanisms by GSEA and immune differ-
ences analysis in the prognosis and development of BC. 

Fig. 6  Survival curves for risk groups in clinical stratification. A Smoked (No smoked or smoked), B Tumor stage (I–II or III–IV), C T stage (1-2 or 3-4), 
D Age (<=65 or >65 years old), E Cluster (1 or 2), F Gender (female or male), G M stage (M0-MX or M1), H N stage (N0-NX or N1-3)
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The results showed that in addition to the inflammatory 
response, cluster 2 was also linked to EMT, ECM recep-
tor interactions, the p53 pathway, and hypoxia. A recent 
study revealed that EMT can progress the migration and 
development of tumors by regulating various lncRNAs 
[38]. Moreover, it was proved that EMT can be enhanced 
to boost tumor metastasis by HSF1 combined with LEF1 
dependence in BC [39]. ECM receptor interactions have 
a wide impact on tumor cell behaviors. Zhang H et  al 
found that ECM is linked to the progression of NMIBC 
to MIBC patients through the NF-κB and PI3K/Akt sign-
aling pathways [40]. Besides, regulating the p53 pathway 
by lncRNA LOC572558 can repress proliferation in blad-
der cancer [41]. Hypoxia, an indispensable contributor to 
tumor development, the results in a significant number 

of inflammatory factors and then triggers macrophage 
polarization that transforms M1 (proinflammatory and 
antitumor) cells into M2 (anti-inflammatory and protu-
mor) cells [42]. In summary, the above pathway analysis 
may serve as an explanation for the poor prognosis of 
cluster 2.

LncRNAs have been discovered to be involved in a 
variety of physiological systems and illnesses. To identify 
a novel prognostic model and study its clinical value in 
BC, we used the training cohort to develop a novel risk 
model based on 12 IRRlncRNAs as a prognostic signature 
and used the test cohort to validate the reliability. The 
model in this study comprised 12 IRRlncRNAs (MAFG-
DT, Z98200.2, LYPLAL1-AS1, AL031429.2, AC008750.1, 
LINC02207, AL139041.1, AL049775.1, AC099850.4, 

Fig. 7  GSEA revealed significant signaling pathway differences between the high- and low-risk groups. A GSEA-GO analysis; B GSEA-KEGG analysis.
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AL591806.1, ETV7-AS1, AC009292.1). Among them, 
Z98200.2, AC008750.1, AL139041.1, and ETV7-AS1 
were shown to be protective of BC prognosis (Hazard 
ratio < 1 and Coef > 0), while MAFG-DT, LYPLAL1-
AS1, AL031429.2, LINC02207, AL049775.1, AC099850.4, 
AL591806.1, and AC009292.1 were identified as risk 
factors for BC prognosis (Hazard ratio > 1 and Coef > 
0, Additional file  6). We found that MAFG-DT expres-
sion was negatively connected with BC prognosis in our 
investigation, which was similar to the findings of Zheng 
Z et al [43]. The link between AC008750.1 and NK cells 
was studied by Sage et al, who revealed that the expres-
sion of AC008750.1 was elevated in activated NK cells, 

and antitumor capabilities of NK cells can be repressed 
when knocking down the expression of AC008750.1 
[44]. In addition, AL591806.1 and LINC02207 are also 
potential immune-associated lncRNA signatures in BC 
and other cancer [45, 46]. And LYPLAL1-AS1 has also 
been verified to engage in the adipogenic differentiation 
and senescence of human stem cell [47, 48]. Therefore, 
these IRRlncRNAs identified by our study can participate 
in other biological processes probably. It needs to note 
that molecular subtypes and the relationship between 12 
IRRlncRNAs and the inflammatory response still need 
further study by experiments in BC.

Fig. 8  The correlation between the risk score and 9 immune cell types. A M0 macrophages, B M2 macrophages, C neutrophils, D activated mast 
cells, E resting CD4 memory T cells, F follicular helper T cells, G activated memory CD4 T cells, H CD8 T cells, I regulatory T cells (Tregs)
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Because of its critical involvement in tumor-antago-
nizing or tumor-promoting actions, the tumor immune 
microenvironment has received much attention. In our 
study, the results of immune infiltration analysis sug-
gested that there was immune heterogeneity within the 
two clusters. Samples of cluster 2 had increased ESTI-
MATE scores, immune scores, and stromal scores. 
Besides, cluster 2 also tended to have more infiltration 
of M0 and M2 macrophages, and these macrophages 
related positively to risk scores of BC. Recent studies 
have suggested that macrophages predominate in chronic 
inflammation and the myeloid cell of tumors, which is 
generally considered to promote malignancy, immuno-
suppression, and metastasis [49, 50]. It was reported that 
TAMs are thought to exert an immunosuppressive effect 
by preventing CD8+ T cells from the antitumor immune 
response [51]. And our study also found that the greater 
risk scores are, the lower CD8+T cells infiltration. And 
cluster 2 also has lower CD8+T cells infiltration and 
higher PD-L1 expression. It is known that PD-L1 can 
inhibit the activation of CD8+T cells. When the acti-
vation of PD-L1 was blocked using relevant inhibitor, 
immune escape can be repressed in BC [52]. Therefore, 
anti-PD-L1 therapy may be more beneficial to cluster 2 
of BC patients in our patients. Qiu et  al. demonstrated 
that macrophages regulate the progression of collagen 
and PI3K/AKT signaling pathway to stimulate BC cell 
growth [53]. Coincidentally, GSVA-GO indicated that 
collagen-associated pathways were enriched in cluster 2. 
As a result, we may reasonably assume that macrophages 
of the TME promote the progression of tumors in cluster 
2 via collagen-associated pathways and participate in the 
occurrence of chronic inflammation, which may result in 
a poor prognosis.

However, there are a few limitations to this study 
that should be considered. This research needs further 
molecular biology experiments focused on inflamma-
tory response-related lncRNAs in BC. And the number 
of IRRlncRNAs to construct the risk model may influ-
ence clinical usability of the risk model. In addition, 
our study only used the OS to analyze the prognostic 
value in survival analysis without consideration of other 
potential confounding factors, such as surgical interven-
tions, owing to relevant information being incomplete in 
TCGA datasets. Ultimately, the 12-IRRlncRNA signature 
was only verified in the TCGA validation cohort, because 
none of the datasets (ICGC and GEO) had a total of 
12 risk IRRlncRNAs to construct and validate our risk 
model adequately.

Conclusion
In summary, 2 inflammatory response-related subtypes 
based on IRRlncRNAs were successfully distinguished 
and established to find potential role of inflammatory 
response in BC. Further, we also successfully developed 
a predictive risk model based on 12 IRRlncRNAs as 
prognostic signatures, which can serve as an independ-
ent prognostic factor for BC patients. In addition, novel 
IRRlncRNA signatures may predict the prognosis of BC 
patients and make novel insight into further therapy regi-
mens combined with the development of an inflamma-
tory response in BC.
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