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Abstract

Background: Mechanisms underlying ischemia/reperfusion injury-acute kidney injury (IRI-AKI) are not fully eluci-
dated. We conducted an integrative analysis of IRI-AKI by bioinformatics methods.

Methods: We screened gene expression profiles of the IRI-AKI at early phase from the Gene Expression Omnibus
(GEQO) database. Differentially expressed genes (DEGs) were identified and enrichment pathways were conducted
based on gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) database, and Gene set enrich-
ment analysis (GSEA). Immune cell infiltration analysis was performed to reveal the change of the microenvironment
cell types. We constructed protein—protein interaction (PPI), and Cytoscape with plug-ins to find hub genes and
modules. We performed robust rank aggregation (RRA) to combine DEGs and analyzed the target genes for miRNA/
transcription factor (TF) and drug-gene interaction networks.

Results: A total of 239 and 384 DEGs were identified in GSE87024 and GSE34351 separately, with the 73 common
DEGs. Enrichment analysis revealed that the significant pathways involve mitogen-activated protein kinase (MAPK)
signaling, interleukin-17, and tumor necrosis factor (TNF) signaling pathway, etc. RRA analysis detected a total of 27
common DEGs. Immune cell infiltration analysis showed the plasma cells reduced and T cells increased in IRI-AKI. We
identified JUN, ATF3, FOS, EGR1, HMOX1, DDIT3, JUNB, NFKBIZ, PPP1R15A, CXCL1, ATF4, and HSPA1B as hub genes. The
target genes interacted with 23 miRNAs and 116 drugs or molecular compounds such as curcumin, staurosporine,
and deferoxamine.

Conclusion: Our study first focused on the early IRI-AKI adopting RRA analysis to combine DEGs in different datasets.

We identified significant biomarkers and crucial pathways involved in IRI-AKI and first construct the immune land-
scape and detected the potential therapeutic targets of the IRI-AKI by drug-gene network.

Keywords: Ischemia/reperfusion injury, Acute kidney injury, Robust rank aggregation, Immune infiltration, Drug-
gene interaction network

Background

Acute kidney injury (AKI), characterized by a rapid
*Correspondence: chenlimeng@pumch.cn decrease in glomerular filtration rate, is a universal dis-
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care unit [2]. The ischemia-reperfusion injury (IRI) is
the most common cause of AKI [3], which often occurs
after surgery and contributes to adverse outcomes in
kidney transplantation. The mismatch between supply
and demand of oxygen is the central pathophysiology of
the IRI/AKI leading to oxidative metabolism reduction
and further injury of tubular epithelial cells [4]. Though
several biomarkers, such as kidney injury molecule-1
(KIM-1), neutrophil gelatinase-associated lipocalin
(NGAL), and interleukin-18 (IL-18), have been studied
for a long time, no one can substitute the creatinine in
the clinical setting since low specificity to predict and
diagnose AKI. Scientists haven’t found pharmacologi-
cal therapy to prevent or reverse the damage once kid-
ney injury is established. Renal replacement therapy is
the only alternative treatment available for severe AKI
patients currently [5]. An in-depth understanding of
the molecular and cellular pathophysiological mecha-
nisms underlying IRI-AKI will contribute to exploring
a more precision approach to detect and treat kidney
injury.

Microarray, a high-throughput tool for powerfully
performing global gene expression profiles. At present,
many studies have applied microarray to explore poten-
tial biomarkers and pathways in disease development [6,
7], which provides instructions for further experiments.
Since seldom IRI-AKI patients receive kidney biopsy,
human kidney specimen is hard-acquired in genome-
wide transcriptional analysis. We investigated the tran-
scriptional pathogenesis and progressions of IRI-AKI
based on the data from experimental animal models
which were widely used in this field.

With the development of bioinformatics, several meth-
ods have been applied to screen the key biomarkers and
pathways involved in the IRI-AKI. However, limited
sample sizes of individual studies and the use of differ-
ent technological platforms lead to substantial inter-
study variability. The robust rank aggregation (RRA) is
an effective method to integrate differentially expressed
genes (DEGs) lists of different platforms, which is both
computationally efficient and statistically stable. This
method has been used in many disorders, such as gastric
cancer [8], papillary thyroid carcinoma [9], and diabetic
nephropathy [10], but hasn’t been applied in IRI-AKI
thus far. Here, we extracted the samples with the same
tissue type and similar genetic background IRI-AKI
mice from GSE87024 and GSE34351 datasets in GEO
database. We adopted the RRA method to find com-
mon DEGs and gene pathways. Further protein—protein
interaction (PPI), gene-miRNA/transcription factor (TF)
network, and drug-gene interaction network were per-
formed to improve the in-depth understanding of the
IRI-AKI (Fig. 1).
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Materials and methods

Microarray data and normalization

We searched the "acute kidney injury [MeSH Terms]
OR acute kidney failure [All fields] OR "renal ischemia—
reperfusion injury” OR "ischemic AKI" AND ‘Expres-
sion profiling by array’[Filter])" in the Gene Expression
Omnibus (GEO)  (http://www.ncbi.nlm.nih.gov/geo).
The inclusion is: (1) The study focused on the ischemia—
reperfusion injury. (2) The sample tissue is the kidney.
(3) The organism is wild-type mice. (4) The IRI-AKI
time is early within 24 h. Besides, considering detecting
the biomarkers of AKI as early as possible and reduc-
ing the heterogeneity of different datasets, we chose the
two datasets (GSE87024 and GSE34351 published in
high-level journals without being analyzed well before
(Table 1). For GSE87024, we extracted the IRI-6 h
(GSM2319037, GSM2319038, GSM2319039) and sham
group (GSM2319034, GSM2319035, GSM2319036) and
for GSE34351, we chose the IRI-4 h (n=3, GSM847661,
GSM847662, GSM847663) and control group of
wild-type mice (n=3, GSM847664, GSM847665,
GSM847666). The method of performing the IRI-AKI
model in the dataset GSE34351 was clipping the left renal
for either 16 min or 23 min after right nephrectomy,
which was like the dataset GSE87024 making the left
renal occluded for 17.5 min.

The platform for GSE87024 is GPL6887, Illumina
MouseWG-6 v2.0 expression beadchip, while GSE34351
is GPL1261 [Mouse430_2], Affymetrix Mouse Genome
430 2.0 Array. Normalization of these data was carried
out with the "limma" R package.

Identification of differentially expressed genes

We applied the linear model and empirical Bayes model
analysis by the "limma" R package to find the DEGs and
calculate the differential expression. The |log2fold change
(FC)|>1.5 and p-value <0.05 were used as the significant
criteria. Heatmaps and volcano plots of DEGs were con-
ducted using the "Pheatmap” and "ggplot2" packages in
R. 4.0.0. An unsupervised principal component analysis
(PCA) method was performed to extract two features
from each group. The overlapping DEGs were further
visualized by the "VennDiagram" R package.

Functional and pathway enrichment analysis

We conducted the Gene ontology (GO) terms and Kyoto
Encyclopedia of Genes and Genomes (KEGG) path-
way enrichment analysis of DEGs in different datasets.
GO analysis can find the biological characteristics in
the biological process (BP) of the genes. KEGG analysis
offers a comprehensive knowledge of bio-interpretation
of cellular processes and identifies shared pathways of
co-expressed genes. We completed and visualized the
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Fig. 1 Flow chart of the study design. GEO: Gene Expression Omnibus; GO: gene ontology; KEGG: Kyoto Encyclopedia of Genes and Genomes;
GSEA: gene set enrichment analysis; IRI-AKI: Ischemia-reperfusion injury induced acute kidney injury. PPI: Protein—protein interaction; DEGs:
differentially expressed genes; WT: wild type

Table 1 Characteristics of the individual studies

GEOID Platform Published Time Organism Strain Tissue Type IRItime Samplesize Citation (PMID) Citation
(Journal)

GSE87024 GPL6887 2016 Mus musculus  C57BL/6 IRI'vs Sham kidney 6 h 3vs3 26,823,548 JASN

GSE34351  GPL1261 2012 Mus musculus  C57BL/10  IRI'vs Sham kidney 4 h 3vs3 22895517 K

GEO Gene Expression Omnibus, /Rl Ischemic renal injury

JASN Journal of American Society of Nephrology, KI Kidney International
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analysis by the "ClusterProiler” V3.16.1 package [11] (sig-
nificant criteria is p < 0.05 and g-value <0.05) and "DOSE"
v3.16.0 [12].

Gene set enrichment analysis (GSEA) of the two expression
data sets

GSEA is a powerful analytical method to identify whole
gene sets, which share common chromosomal location,
biological function, or regulation by comparison with
knowledge-based databases accumulating large-scale
expression data sets [13]. We conducted the GSEA of the
two datasets in GO and KEGG respectively. Each analy-
sis performed 1000 times of arrangement of the gene set.
The criteria of the significantly enriched gene sets were
P-value<0.05. The GSEA analysis was performed by the
"ClusterProiler" V3.16.1 package.

Evaluation of immune cell infiltration

To evaluate the immune cell role and change in the IRI-
AKI, we conducted the immune cell infiltration analysis
by CIBERSORT method [14]. CIBERSORT can accu-
rately estimate the immune composition of tissue. We
conducted this analysis by " CIBERSORT.R" script and
visualized the results by "pheatmap” and "ggpubr" R
packages.

Construction and analysis of protein and protein
interactions (PPI) network

We searched the common DEGs in the online tool
STRING (http://www.string-db.org/) to construct the PPI
network showing interactions between genes or proteins.
We conducted the confidence score of 0.4 as the cut-off
value, visualized the PPI network of DEGs by Cytoscape
software [15]. Cytohubba and CytoNCA [16] plug-in
were employed to identify the hub genes separately. We
adopted 11 methods (MCC displays a satisfying com-
parative performance) in Cytohubba and 3 evaluation
indexes (degree centrality (DC), betweenness centrality
(BC), closeness centrality (CC) applied in the CytoNCA.
We further extracted hub modules using another plug-in
- Molecular Complex Detection (MCODE) with the cut-
off score of 2.

Robust rank aggregation (RRA) method to find the DEGs

We used the de-bach effect, the robust rank aggregation,
and probabilistic models to integrate sorted lists of dif-
ferent gene expression profiles from the different pro-
tocols or measurement platforms. Based on each gene
freely arranged in each data assumption, we scored the
rank vector by the order-based statistical analysis and
defined the final score of each vector as the minimum
p-value. The p-value is corrected to determine whether
the ranking of a specific gene is statistically significant,
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and multiple checks to assess the stability of the acquired
p values. We repeated leave-one-out cross-valida-
tion 10,000 times and calculated the averaged p values
from all rounds. If a gene ranks high in the results of all
DEGs, the smaller p-value was by the RRA method and
with the greater probability of the DEGs’ robustness. This
process was conducted by the “RobustRankAggreg” R
package [17].

Transcription factor (TF)-gene interactions

and gene-miRNA network of the combined DEGs and hub
genes

We constructed the gene-miRNA network and TF-gene
interactions of the combined DEGs from RRA analysis and
hub genes in the NetworkAnalyst [18] (https://www.net
workanalyst.ca/), which is a comprehensive web platform
for gene expression analysis. The gene-miRNA network
is based on the miRTarBase (http://mirtarbase.mbc.nctu.
edu. tw/php/download.php), while TF-gene interactions
based on the ENCODE (http://cistrome.org/ BETA/).

Construction of Drug Gene Interaction network

The Drug Gene Interaction Database (DGIdb) version 3.0.2
(https://www.dgidb.org) consolidates, synthesis, and nor-
malizes drug-gene interactions and gene druggability infor-
mation from 30 disparate sources [19]. We searched the
DEGs genes from the RRA analysis and hub genes in the
DGIdb to explore potential drugs or molecular compounds
that interacted with the genes. The drug-gene interaction
network was visualized by the Cytoscape software.

Results

Identification of differentially expressed genes

After standardization of the two datasets (Figure S1), 239
(187 up-regulated and 52 down-regulated genes) and 384
DEGs (259 up-regulated and 125 down-regulated genes)
were extracted from the GSE87024 and GSE34351. PCA
score trajectory plots indicated that the IRI and CON
groups didn’t overlap suggesting the apparent differences
between the two groups (Fig. 2 A-B). Heatmaps showed
the DEGs could discriminate between the IRI and control
(CON) groups (Fig. 2 C-D). The volcano plots visualized
the distribution of DEGs (Fig. 2E-F).

Functional and pathway enrichment analysis

For up-regulated genes in GSE87024, the KEGG pathway
analysis acquired the 23 significant pathways with the top
3 pathways are TNF signaling pathway, MAPK signaling
pathway, and IL-17 signaling pathway (Fig. 3A). Cneplot
visualized the conjunction between genes and the enrich-
ment pathway(Fig. 3B). GO functional enrichment analysis
showed up-regulated genes were mainly involved in GO
terms about the regulation of vasculature development,
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Fig. 2 Principal components analysis (PCA) score trajectory plots, heatmaps, and volcano plots of the two datasets. A, B Principal components
analysis (PCA) score trajectory plots (A: GSE87024; B: GSE34351) indicate obvious differences between the ischemic acute kidney injury (IRI)

and control (CON) group. C, D Heatmaps and showing the differentially expressed genes (DEGs) between the IRl and CON group. The red color
represents the up-regulated genes, while the blue color represents the down-regulated genes. Samples are sorted by columns, and genes are
sorted by rows. E, F Volcano plots showed the significantly DEGs in two datasets (A: GSE87024; B: GSE34351). Red points represent up-regulated,
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response to extracellular stimulus, and intrinsic apop-
totic signaling pathway (Fig. 3C). GO Cluster plot showed
the interaction between clusters and genes in GO terms
(Fig. 3D). Relationships of different GO terms were

visualized in Goplot (Fig. 3E). The down-regulated genes
weren't enriched in any pathways.

For GSE34351, up-regulated genes were enriched in 28
significant pathways, including MAPK, IL-17, TNE, and
Estrogen signaling pathways (Fig. 4A). Emaplot displayed
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the interaction of enriched pathways, and Cneplot visual-
ized the interaction between genes and the enrichment
pathways (Fig. 4B-C). Significant enrichment of GO terms
included the unfolded protein, regulation of vascula-
ture development, transcription from RNA polymerase
IT promoter to stress, and topologically incorrect protein
(Fig. 4D). GO circle and cluster plot showed the distribu-
tions of the genes and GO terms (Fig. 4E-F). No pathway
was enriched in the down-regulated genes. Venn diagram
showed the common 73 DEGs from the two expressional
datasets (Fig. 5A).

Combined DEGs enrichment analysis of GO and KEGG
showed the significant pathways involved C—type lec-
tin receptor, NF —kappa B, and GnRH signaling pathways
(Table S1-2, Fig. 5B-D).

GSEA of the two expression data sets

GSEA of all detected genes in GSE87024 showed that the
top KEGG gene set is the PI3K-Akt signaling pathway
(Fig. 6A). The other possible mechanisms of IRI—AKI
included MAPK signaling pathway and cytokine- cytokine
receptor interaction in KEGG (Fig. 6B). The most signifi-
cantly enriched gene set of GO terms was the mitotic cell
cycle regulation (Fig. 6C). The other top 10 enrichment GO
terms involved cell growth, upregulation of cell projection
organization, T cell activation, and negative regulation of
phosphorylation (Fig. 6D). For GSE34351, GSEA analysis of
KEGG pathways was similar to the GSE87024 (Fig. 7A-B).
GO terms indicated the biological process of the IRI-AKI
development related to positive regulation of cellular com-
ponent biogenesis, reproductive structure development,
and positive regulation of MAPK cascade (Fig. 7C-D).

Evaluation of immune cell infiltration

Immune cell infiltration analysis showed plasma cells, T
cells CD4 naive decreased in IRI-AKI group, while T cells
CD4 memory resting and T cells follicular helper increased
in GSE87024. In GSE34351, macrophages M1 elevated
while the plasma cells and NK cells reduced in IRI-AKI
(Fig. 8).

PPI network and analysis of hub genes and modules

The cluster of the PPI network of common 73 DEGs
was composed of 73 nodes and 206 edges (Fig. 9A). The
top 10 hub genes selected in the Cytohubba plug-in
using the MCC method (score >5000) and node degree
(score>10) included Activating Transcription Factor 3
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(ATE3), FOS, JUN, DNA Damage Inducible Transcript
3 (DDIT3), Activating Transcription Factor 4 (ATF4),
Early Growth Response 1 (EGR1), Heme Oxygenase
1 (HMOX1), Heat Shock Protein Family A Member 1B
(HSPA1B), JUNB, and Protein Phosphatase 1 Regulatory
Subunit 15A (PPP1R15A) (Fig. 9B). Applying CytoNCA,
we obtained ten hub genes, namely JUN, ATEF3, FOS,
EGR1, HMOX1, DDIT3, JUNB, NF-kappa-B inhibitor
zeta (NFKBIZ), PPP1R15A, and C-X-C Motif Chemokine
Ligand 1 (CXCL1). Three hub modules were identified
and the most significant module had 15 nodes (MCODE
score =6, Fig. 9C-E).

RRA to find the combined DEGs

A total of 25 significant up-regulated genes and two
down-regulated genes were identified in the RRA analy-
sis. The heat map showed the expression profile of the
top 20 most significant up and down-regulated genes.
Each square represented a different gene, and each col-
umn represented the expression level of all genes in a
data set (Fig. 10).

TF-gene interactions and gene-miRNA network
Gene-miRNA network showed both Adm and Jun modu-
lated by 5 miRNAs, while Egrl regulated by 3 miRNAs
(Fig. 11A). The top 3 targeted DEGs for TFs were Junb,
2410006H16Rik, and Nfkbiz modulated by 26, 18, and 16
TFs separately (Fig. 11B).

Construction of drug gene interaction network

The drug-gene interaction network indicated that JUN,
DDIT3, CERT, FOS, ADM, interact with 44, 26, 22, 10,
and 7 drugs or molecular compounds separately. The
deferoxamine, glutamine, sirolimus, indomethacin are
connected with JUN and DDIT3. (Table S3, Fig. 12).

Discussion

In this study, we screened two expression profiles with
the same tissue and similar genetic background mice in
early-stage IRI-AKI from the GEO database, adopted
RRA analysis to integrate the DEGs for detecting the
potential biomarkers and pathways in the pathogenesis of
IRI-AKI. We identified the MAPK, TNF, and IL-17 sign-
aling pathways in KEGG database. Regulating the vascu-
lature development, responding to extracellular stimulus,
and intrinsic apoptotic signaling pathway were identified

(See figure on next page.)

Fig. 3 Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes analysis (KEGG) enrichment of up-regulated differentially expressed
genes (DEGs) in GSE87024. A Advanced bubble chart shows significant KEGG pathways of the DEGs. B Cneplot visualized the conjunction between
genes and the enrichment pathway. C Bar chart visualized the GO enrichment significance items of DEGs. D GO Cluster plot showed the interaction
between clusters and genes in GO terms. E GO plot of the interactions between different GO terms
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Fig. 4 Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes analysis (KEGG) enrichment of up-regulated differentially expressed
genes (DEGs) in GSE34351. A Advanced bubble chart shows significant KEGG pathways of the DEGs. B Cneplot visualized the conjunction between
genes and the enrichment pathways. C Emaplot suggested the interaction of enriched pathways. D Bar chart visualized the GO enrichment
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in GO database. Further GSEA analysis showed the reproductive structure development pathway are crucial
PI3K-Akt signaling pathway, cytokine-cytokine receptor, in IRI-AKI. Combined with the analysis by Cytohubba
positive regulation of cellular component biogenesis, and and CytoNCA, we figured out the JUN, ATF3, FOS,
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EGR1, HMOX1, DDIT3, JUNB, NFKBIZ, PPP1R15A,
CXCL1, ATF4, and HSPA1B as hub genes.

GO, KEGG and GSEA analysis showed that the MAPK,
TNF and IL-17 signaling pathways are crucial in IRI-AKI
development. MAPK signaling pathway consists of four

branches, namely ERK, JNK, p38, and ERK5. Activation
of p38 and JNK signaling is a feature of acute kidney dis-
ease. The relative levels of JNK, p38, and ERK activation
have been considered to determine cell fate after kid-
ney damage. Selective inhibitors of p38 MAPK seemed
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to be effective in rodent models of acute kidney disease
[20]. Remote ischemic pretreatment plays a role in pre-
venting IRI from developing through activating JNK,
p38, and MAPK kinase [21]. Several drugs or molecu-
lar compounds mitigate IRI via the MAPK pathway [22,
23]. TNF, considered as a crucial mediator in cell pro-
liferation, cell death, and differentiation, interacts with
two cell surface receptors: TNFR1 and TNFR2 (TNFRs)
[24]. Studies showed the level of circulating TNF was
increased during IRI-AKI causing renal cell damage via
neutrophil-mediated inflammatory injury and apoptosis
[25]. IRI mice with genetic deletion of TNFR1 displayed
a significant lessening in renal injury and inflammation

[26]. Pretreatment soluble TNFR2 fusion protein to neu-
tralize TNF-a mitigate renal injury in IRI rats [27]. The
IL-17 family consists of six members IL-17A-F and five
members IL-17R A-E form the IL-17 receptor family.
Researches showed IL-17A activation in IRI mice may
promote inflammation activity. Administration of a neu-
tralizing monoclonal anti-IL-17A antibody can attenuate
renal damage by reducing pro-inflammatory mediators
and enhancing renal and circulation levels of anti-inflam-
matory cytokines [28, 29]. Further researches are needed
to detect the function of these pathways in IRI-AKI.

We identified 10 hub genes in IRI-AKI with one
biomarker (Atf3) has been studied in IRI-AKI, five
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biomarkers (Cxcll and Jun, Fos, Nfkbiz, Hmox1) were
researched in other types of AKI, 2 genes (Atf4 and Egrl)
play role in I/R injury of other organs and three genes
(Ppplrl5a, Hspalb, and Ddit3) had not been reported
in AKI or IRI researches. Atf3 could protect against IRI-
AKI via suppressing p53 and inducing p21. In vitro stud-
ies showed it attenuated cell apoptosis by interacting
with Nicotiflorin [30, 31]. CXCL1-CXCR?2 signaling axis
played an important role in alleviating cisplatin-induced

AKI by regulation of inflammatory response [32]. Jun was
studied in acute kidney injury including aristolochic acid-
induced AKI, crush syndrome induced AKI, and myoglo-
binuric AKI but not IRI-AKI [33-35]. Inhibitor of c-Fos/
activator protein-1 could decrease the production of
TNF-a and other downstream molecules, which protect
against LPS-AKI [36]. FosB induced the elevated expres-
sion of matrix metalloproteinase-2 in the cardiac IRI
mice [37]. Studies found the NF-kB/miR-376b/NFKBIZ



You et al. Hereditas (2022) 159:24

Page 14 of 18

lsereaso |5 N B8 28 A N N S N I R R
AR S[R|e|2|8(3|e|B|a|N R[2|8

NA 1-Mar I 6
2.09 Atf4
1.51 Cftr 4
1.71 Adm
1.62 Akap2 9
1.93 Adamts1
NA 4833422C13Rik
188 Ankrd1 0
2.57 Asns
NA 4933407108Rik
2.56 Ddit3
NA 4932702M13Rik
3.57 AA467197
3.48 Atf3
3.30 Dusp5
2.89 Cxcl2
2.86 Cyr61
3.29 Akap12
3.41 Ch25h
3.48 Cldn4
&
®
3
N

Fig. 10 Heatmap of the Robust Rank Aggregated showed the top 20 differentially expressed genes aggregated of the two datasets. The red
represents log FoldChange (FC) >0, while green represents log FC < 0. The value in the box displays the log FC value

negative feedback loop adjusted intrarenal inflammation
and alleviated renal damage in septic AKI [38]. HMOX1
long GT tandem repeats are associated with the occur-
rence of AKI in sickle cell anemia people [39]. Atf4 was
related to endoplasmic reticulum stress, amino acid star-
vation, mitochondrial stress, and oxidative stress. It was
reported that MIF-2/D-DT increased proximal tubular
cell regeneration via ATF4-dependent pathways in IRI
mice [40]. Egrl was mainly studied in myocardial IRI and
it may serve as a major regulator of remote precondition-
ing [41]. For Ppplrl5a, Hspalb, and Ddit3, we haven't
found any related AKI or IRI studies, which should be
further verified in experimental studies.

In the gene-miRNA network analysis, mmu-mir-138-5p
was found continuously increased in urine samples of
rats daily administrated with gentamicin [42]. Researches
showed that miR-709 was significantly upregulated in the
proximal tubular cells of human and mice when suffering
AKI [43]. However, there was no article about the roles of
those miRNAs on IRI-AKI. Further studies were needed
to examine the effects of these miRNAs on IRI-AKI.

We first conducted the drug-gene interaction network
to identify the potential targets of IRI - AKIL. Our results
showed that staurosporine is a common molecular com-
pounds interacting with CXCL2 and DDIT3. Consid-
ered as a protein kinase C inhibitor, staurosporine could
protect against the impairment of working memory in
IRI gerbils and rats [44, 45]. Curcumin interacts with
both DDIT3 and cystic fibrosis transmembrane con-
ductance regulator (CFTR). It is a diketone compound
extracted from the plant turmeric. Some animal stud-
ies have shown that curcumin can protect the I/R injury
and toxin-induced injury [46, 47]. Nowadays, researchers
have designed a stepwise-targeting chitosan oligosac-
charide conjugate, which can convey curcumin to renal
tubular epithelial cells and remove excessive reactive
oxygen species (ROS), to treat acute kidney injury [48].
Crofelemer, an inhibitor of the CFTR, was applied to
alleviate pain in women with irritable bowel syndrome-
diarrhea (IBS-D) as well as treat noninfectious diarrhea
in HIV-positive patients receiving antiretroviral therapy
[49]. Further studies should be conducted to discover the
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roles of the drugs or molecular compounds as potential
therapeutic targets.

Our study have some strengths. First, we screened all
the datasets about the IRI-AKI in GEO and focused on
the early onset of this disease selecting the mice with
similar genetic background to reduce individual dif-
ferences. Second, we applied multiple bioinformatic
methods to identify common DEGs that are potentially
involved in the disease. In our limited knowledge, this
was the first study applied the RRA analysis, a robust
and compelling approach to integrate different datasets
on IRI - AKI. Third, we performed the GSEA method
utilizing all genetic expression information in data-
sets to find the crucial pathways in IRI-AKI. Different
methods are applied to detect the hub genes and hub
modules. Forth, we further analyzed the target genes
for miRNA/TF. Fifth, we analyzed the signature of the
immune cell in and found the T cell increasing in IRI-
AKI. Last, we first conducted the drug-gene interaction

network and identified 116 drugs or compounds as
potential therapeutic targets of IRI-AKI giving new
insights for further study.

There were some limitations in our study. First, to
aggerate samples with similar genetic background mice
and IRI-AKI occurrence time, we only selected two data-
sets and extracted a total of 12 samples. Though different
times of IRI in GSE87024, we chose the earliest time after
IRI-AKI to analyze. Since the limited sample numbers,
we can’t apply the weighted gene co-expression network
analysis (WGCNA) to construct gene co-expression net-
works in our study. Second, we focused on the microar-
ray and didn’t include the RNA-seq, so we lack the data
of miRNA and IncRNA. However, we constructed the
TF-gene interactions and gene-miRNA network utilizing
the open database. Third, the DEGs acquired from the
RRA analysis are limited, we didn’t perform further GO
and KEGG pathway analysis. Fourth, we didn’t validate
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the hub genes identified in this study in AKI patients or
experiment, which is a part of our future work.

Conclusions

To conclude, our study identified 10 hub genes and 3
modules, key pathways involved in early IRI-AKI diag-
nosis and treatment utilizing various bioinformatic
methods. We constructed the immune landscape and
provided new insights and implications for further
experimental confirmation.
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