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Background: Alzheimer's disease (AD) is an extremely complicated neurodegenerative disorder, which accounts for
almost 80 % of all dementia diagnoses. Due to the limited treatment efficacy, it is imperative for AD patients to take
reliable prevention and diagnosis measures. This study aimed to explore potential biomarkers for AD.

Methods: GSE63060 and GSE140829 datasets were downloaded from the Gene Expression Omnibus (GEO)
database. The differentially expressed genes (DEG) between AD and control groups in GSE63060 were analyzed
using the limma software package. The mRNA expression data in GSE140829 was analyzed using weighted gene
co-expression network analysis (WGCNA) function package. Protein functional connections and interactions were
analyzed using STRING and key genes were screened based on the degree and Maximal Clique Centrality (MCCO)
algorithm. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were

Results: There were 65 DEGs in GSE63060 dataset between AD patients and healthy controls. In GSE140829
dataset, the turquoise module was related to the pathogenesis of AD, among which, 42 genes were also
differentially expressed in GSE63060 dataset. Then 8 genes, RPS17, RPL26, RPS3A, RPS25, EEF1B2, COX7C, HINT1 and
SNRPG, were finally screened. Additionally, these 42 genes were significantly enriched in 12 KEGG pathways and

Conclusions: In conclusion, RPS17, RPL26, RPS3A, RPS25, EEF1B2, COX7C, HINTT and SNRPG, were potential
biomarkers for pathogenesis of AD, which should be further explored in AD in the future.
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Introduction

Alzheimer’s disease (AD) is an extremely complicated
neurodegenerative disorder [1], which is usually charac-
terized by progressive decline of abilities to varying de-
grees, such as memory, language, behavior and so on [2].
Additionally, AD accounts for almost 80 % of all demen-
tia diagnoses and has been the domain cause of demen-
tia [3]. There are more than 45 million people

* Correspondence: tjgaosheng@outlook.com

fHuimin Wang and Xiujiang Han equal contribution.

’Department of Geriatrics, Tianjin Hospital of ITCWM Nankai Hospital, No.6
Changjiang Road, Nankai, 300100 Tianjin, China

Full list of author information is available at the end of the article

B BMC

worldwide suffering from AD and the number is esti-
mated to approximate 131 million in next few decades
according to a recent report [4]. On the one hand, the
increasing number of AD patients is probably caused by
the pathological heterogeneity characteristic of AD pa-
tients [5]. On the other hand, it has been widely re-
ported that there are two pathologies in AD: B-amyloid
plaque deposition and neurofibrillary tangles of hyper-
phosphorylated tau [6-8], however, no universally ac-
ceptable hypothesis could explain the pathogenesis of
AD [1, 9]. Accordingly, despite the significant advance-
ments in molecular medicine, the current AD treatments
are still not enough to prevent the patients from the

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if

changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.


http://crossmark.crossref.org/dialog/?doi=10.1186/s41065-021-00187-9&domain=pdf
http://orcid.org/0000-0001-8745-5451
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:tjgaosheng@outlook.com

Wang et al. Hereditas (2021) 158:23

irreversible and progressive cognitive decline [1, 10], the
negative influence of which is increasing as the aging
population in many countries [11]. Collectively, it will be
of great significance for all AD patients to take reliable
prevention and diagnosis measures in earlier stage. Ob-
viously, potential molecular biomarkers are helpful tools
for AD prevention and diagnosis.

At present, it is imperative for those mild cognitive
impairment (MCI) and AD patients to receive timely de-
tection, early diagnosis and appropriate management
[12]. Lots of researchers devoted to find reliable evi-
dences for the understanding of the molecular pathogen-
esis of AD, some of which have been transformed into
promising treatment approaches [13, 14]. For instance,
many biomarkers in cerebrospinal fluid (CSF) has been
widely investigated, including amyloid-p (AB) [15, 16],
total tau levels [17, 18], phosphorylated tau levels [18,
19] and other novel candidate biomarkers. Moreover, it
has been demonstrated that more than one biomarker
would be more accurate to reveal the probability of AD
due to mild cognitive impairment (MCI) [20]. Mean
while, some reports revealed that CSF and PET bio-
markers were reserved for some certain type of AD in
clinical cases, like atypical, rapidly progressive AD and
so on [21, 22]. However, due to the invasiveness of CSF
collection, this approach is greatly limited in the clinical
application [14]. More researches began to explore other
biomarkers from easily accessible fluid like plasma and
urine. It has been reported that MT1 and several other
genes were potential targets for AD therapy, but only
weighted gene co-expression network analysis (WGCN
A) was included in the study [6]. Another research has
suggested that GRIK1 was related to AD stages, via
WGCNA analysis [23]. Many previous studies usually fo-
cused on one certain gene or one analysis method.
Therefore, except for WGCNA, other methods were also
used in this research in order to find multiple potential
biomarkers associated with the onset of AD, so as to
provide more reference information for AD research in
the future.

In the present study, two datasets GSE63060 and
GSE140829 were downloaded from Gene Expression
Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/)
database, and WGCNA, differential expression analysis
and further analysis were integrated in our research. We
herein aimed to screen novel potential biomarkers for
AD patients through a comprehensive analysis.

Materials and methods

Data sources

All mRNA expression data of Alzheimer’s Disease (AD)
was downloaded from Gene Expression Omnibus (GEO,
https://www.ncbi.nlm.nih.gov/geo/) database. The
GSE63060 dataset [24] included 145 blood samples from
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AD patients and 104 blood samples from healthy con-
trols. The mRNA expression data of this dataset was de-
tected using the Illumina HumanHT-12 V3.0 expression
beadchip platform. Another dataset GSE140829 included
204 blood samples from AD patients and 249 blood
samples from healthy controls. The mRNA expression
data of GSE140829 dataset was detected using
HumanHT-12 v4 Expression BeadChip platform. The
clinical characteristics of the samples in these two data-
sets were shown in Table S1.

Differential expression analysis

The differentially expressed genes (DEG) between AD
and control groups were analyzed using the limma soft-
ware package [25] in R language. The |log,FC|>0.5 and
adjusted P value < 0.05 (Pppr<0.05) after multiple testing
by Benjamini and Hochberg (BH) method were used as
the standards to screen the DEGs.

Weighted gene co-expression network analysis

The mRNA expression data in GSE140829 was analyzed
using WGCNA function package [26] in the R language.
Via this method, all genes would be hierarchically clus-
tered according to the gene expression value, then mod-
ules were identified using dynamic tree cutting method
and those genes with higher similarity would be classi-
fied into the same module. Subsequently, the Module
Eigengene (ME) value of each module was calculated.
Additionally, the correlation coefficient between the ME
value and certain phenotypes (such as type of disease,
gender, age and so on) was calculated. When p value
was less than 0.05, the larger the correlation coefficient,
the closer relationship between this module and the
phenotype.

Functional enrichment analysis

Gene ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway enrichment analyses
were performed using clusterProfiler [27] package in R
language. GO enrichment analysis included Biological
Process (BP), Cellular Component (CC) and Molecular
Function (MF) terms. The GO terms and KEGG path-
ways with P. adjust < 0.05 were considered to be signifi-
cantly enriched.

Protein-protein interaction (PPI) network analysis

STRING is a database used for protein functional con-
nection and protein-protein interaction analyses. Here,
protein functional connections and interactions were an-
alyzed using STRING (https://string-db.org/,version
11.0) [28]. The interaction pairs with confidence score >
0.4 were retained. The PPI network was then visualized
using Cytoscape (version 3.7.2) (https://cytoscape.org/)
[29]. The key genes in PPI network were screened based
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on the degree of nodes and Maximal Clique Centrality
(MCC) algorithm, using cytoHubba plug-in of Cytoscape
software.

Results

Differentially expressed genes

Based on all mRNA expression data in GSE63060 data-
set, the DEGs between AD and healthy control groups
were identified. Between AD patients and healthy con-
trols, there were 65 DEGs, including 1 up-regulated gene
and 64 down-regulated genes (Fig. 1A). The expression
levels of these DEGs were significantly different between
the two groups (Fig. 1B).

Potential genes related to AD occurrence identified via
WGCNA analysis

WGCNA analysis was performed on the samples in
GSE140829 dataset. The results showed that the gene
co-expression network conformed to unsigned network.
The higher the square of the correlation coefficient, the
closer the network was to the distribution of unsigned
network. The square of the correlation coefficient, 0.85,
was taken as the standard to select the soft threshold
(B = 10, Fig. 2A).

Then the genes were clustered based on average-
linkage hierarchical clustering method. According to the
standard of dynamic tree cutting, 100 was set as the
minimum number of genes in each gene network mod-
ule. Subsequently, module eigengene (ME) value of each
module was calculated in turn and cluster analysis was
performed on the modules. The close modules were
merged into a new one. With the height of 0.25, 6 mod-
ules were finally obtained (Fig. 2B). The gray module
contained all genes that could not be clustered in other
modules.
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According to the ME values of the obtained modules,
the correlations between these modules and the pheno-
types were calculated. The results suggested that the
correlation between the turquoise module and sample
type was the largest (correlation coefficient was - 0.16,
P =8e-4) (Fig. 2C), which indicated that the genes in tur-
quoise module (n=2215) obtained via WGCNA were
potentially related to the pathogenesis of AD. Moreover,
42 of the 2215 genes in turquoise module were also dif-
ferentially expressed in GSE63060 dataset (both were
up-regulated in AD), which implied that these 42 genes
were potentially more associated with the pathogenesis
of AD (Fig. 2D).

Significantly enriched GO terms and KEGG pathways

In order to obtain more function information of the 42
shared genes, GO and KEGG pathway enrichment ana-
lyses were performed. GO terms were significantly
enriched, including 51 Biological Process terms, 52 Cel-
lular Component terms and 16 Molecular Function
terms. The top 10 significantly enriched Biological
Process terms (Fig. 3A), Cellular Component terms
(Fig. 3B) and Molecular Function terms (Fig. 3C) were
displayed in Fig. 3A-C. There were 12 KEGG pathways
that were significantly enriched (Fig. 3D). The detailed
results of GO and KEGG pathway enrichment analyses
were shown in Table S2.

PPI network construction and key genes screening

The 42 genes were chosen to construct the PPI network.
The interaction pairs with confidence score > 0.4 were
visualized using Cytoscape software (Fig. 4A). Among
the 42 genes, there were 39 interacting genes. Among
them, COX7C had the highest node degree of 26, and
the lowest node degree was 13. The top 10 genes
screened according to the degree of the node were
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Fig. 1 Differentially expressed genes. A Volcano map of differentially expressed genes in GSE63060 dataset. Horizontal axis: the log,FC value;
vertical axis: -log10 (FDR). Red: up-regulation; green: down-regulation; black: non-significant difference. B Expression level heat map of
differentially expressed genes in GSE63060. Horizontal axis: genes; vertical axis: samples. Red: high expression; green: low expression
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Fig. 2 Results of WGCNA. A Schematic diagram of soft threshold screening. Red line represented the square of the correlation coefficient, 0.85,
and the first point above red line was the soft threshold 3 = 10. B Schematic diagram of gene module clustering. Each color represented a
module, and the gray module included the genes that could not be clustered into any module. C Heat map of the correlation between gene
module and phenotype. Red: positive correlation; blue: negative correlation. The darker the color, the greater the correlation. D Venn diagram of

Cluster Dendrogram

1.0

0.6
L

Height

o J
S

Module colors

fastcluster::hclust (*, "average")

D
GSE630630

GSE40829

differentially expressed genes in GSE63060 dataset and genes screened via WGCNA in GSE140829 dataset

A

nuclear-transcribed mRNA catabolic
process, nonsense-mediated decay

nuclear-transcribed mRNA catabolic process

SRP-dependent cotranslational
protein targeting to membrane

cotranslational protein targeting to membrane{
protein targeting to ER

establishment of protein localization
to endoplasmic reticulum
translational initiation

mRNA catabolic process-

protein localization to endoplasmic reticulum-{

mitochondrial ATP synthesis coupled

electron transport

p.adjust

1e-09
2e-09
3e-09

structural constituent of ribosome {
NADH dehydrogenase activity
NADH dehydrogenase (ubiquinone) activity

NADH dehydrogenase (quinone) activity

oxidoreductase activity, acting on NAD(P)H,
quinone or similar compound as acceptor

oxidoreductase activity, acting on NAD(P)H
electron transfer activity

ubiquinol-cytochrome-c reductase activity
oxidoreductase activity, acting on diphenols and
related substances as donors, cytochrome as acceptor
oxidoreductase activity, acting on diphenols
and related substances as donors

Fig. 3 Significantly enriched GO terms and KEGG pathways.A The top 10 significantly enriched Biological Process terms. B The top 10 significantly
enriched Cellular Component terms. C The top 10 significantly enriched Molecular Function terms. D The 12 significantly enriched KEGG
pathways. Horizontal axis: the number of enriched genes; vertical axis: the corresponding biological process; different p.adjust values were

represented by altered colors

cytosolic ribosome 1

ribosomal subunit

ribosome {

cytosolic part

respiratory chain complex
mitochondrial respiratory chain
respiratory chain
mitochondrial protein complex
oxidoreductase complex

small ribosomal subunit

p.adjust

5e-08

1e-07

°
©
)
©

D

Oxidative phosphorylation
Non-alcoholic fatty liver disease
Ribosome
Thermogenesis
p.adjust Parkinson disease
0.001 Prion disease
0.002 Huntington diseas‘e
Retrograde endocannabinoid

0.003  sign

Corcnagvi?\.:isn isease - COVID-19
Th17 cell differentiation

IL-17 signaling pathway

Cardiac muscle contraction

I
[ ]
]
I
I
I o1
I %02
I 003
[ ]

[ ]

[ |

|

[ 5 10




Wang et al. Hereditas (2021) 158:23

Page 5 of 8

algorithm. The darker color from yellow to red represented greater score

A Node Fill Color Mapping

Fig. 4 PPl network construction and key genes screening. A Diagram of protein-protein interaction network. Each dot represented a node. The
more line segments connected to the node, the greater the degree of this node. The degree of node was reflected by its size and color. The
larger the node, the deeper color from yellow to red, the greater the degree. B Network diagram of the top 10 genes screened according to
degree. The darker color from yellow to red represented greater degree. C The network diagram of the top 10 genes screened via MCC

displayed in Fig. 4B, using cytoHubba plug-in of Cytos-
cape software. The top 10 genes screened according to
the MCC algorithm were shown in Fig. 4C, among
which, 8 genes were overlapped with the top 10 genes
screened by the degree. The results suggested that these
8 genes, including RPS17, RPL26, RPS3A, RPS25,
EEF1B2, COX7C, HINT1 and SNRPG, were more cru-
cial to the pathogenesis of AD. Detailed degree and
MCC algorithm score of these 8 genes were displayed in
Table 1.

Additionally, as differentiating AD from other diseases
with similar symptoms is of great clinical significance,
we also established a logistic regression model based on
the selected 8 genes to further evaluate our biomarkers
in distinguishing AD from mild cognitive impairment
(MCI), another type of dementia disorder. As shown in
Figure S1, the area under curve (AUC) value of the
established model was 0.6021, indicating that the model

based on the selected genes had potential value in differ-
entiating AD from MCI. However, this is only a prelim-
inary research on the utility of the selected genes, and
further optimization is needed for their pervasive appli-
cation in this regard.

Table 1 The degree and MCC score of the selected 8 genes

Gene Degree MCC score
RPS17 23 1.05E+09
RPL26 23 1.05E+09
RPS3A 22 1.04E + 09
RPS25 21 1.04E+09
EEF1B2 22 1.01E+ 09
COX7C 26 9.68E + 08
HINT1 24 9.64E + 08
SNRPG 24 9.63E + 08
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Discussion

In this research, via an integrated analysis including
WGCNA, differential expression analysis and other fur-
ther analyses of the data downloaded from GEO data-
base, we have explored the possible biomarkers for AD
patients. There were 65 DEGs between AD patients and
healthy controls in GSE63060 dataset. Subsequently, via
WGCNA, the turquoise module was found to be related
to the pathogenesis of AD. Finally, 8 genes, including
RPS17, RPL26, RPS3A, RPS25, EEF1B2, COX7C, HINT1
and SNRPG, were evidenced to be crucial to the patho-
genesis of AD.

Two datasets, GSE63060 and GSE140829, were in-
cluded in our research. Firstly, in GSE63060 dataset, 65
genes were found to be differentially expressed between
AD patients and healthy controls, including 1 up-
regulated gene and 64 down-regulated genes. Then,
WGCNA analysis was performed on the samples in
GSE140829 dataset, through which, 6 co-expression
modules were obtained and the turquoise module was
related to the pathogenesis of AD. Among all 2215
genes in turquoise module, 42 genes were also differen-
tially expressed in GSE63060 dataset. As far as we
know, most of the previous studies only used WGCNA
to find AD related genes [6, 30], but we have integrated
the results of DEGs and WGCNA in order to obtain a
more reliable basis before further analysis. Based on the
PPI network, 8 genes among all 42 genes were finally
screened according to the degree and MCC algorithm,
which included RPS17, RPL26, RPS3A, RPS25, EEF1B2,
COX7C, HINT1 and SNRPG. Some direct or indirect
evidence was found to support most of the 8 genes. Re-
garding RPL26, Mastroeni at al. suggested that it was a
marker of ribosome in neurons and could be used in
methylation related studies in AD neurons in the future
[31]. And a recent research demonstrated that RPS3A
was not only major pathogenic gene of MCI, but bridge
gene; SNRPG was not only major pathogenic gene of
MCI and AD, but also bridge gene [32]. Our results
were consistent with the previous researches to some
extent. It has been suggested that RPS25 might be a po-
tential therapeutic target for C9orf72-related neurode-
generative diseases caused by nucleotide repeat
expansions [33], which could support our findings in-
directly. A study documented that AEEF1B2 belonged
to the eukaryotic elongation translational machinery
and AEEF1B2 variants in the translational machinery
were associated with several neurodevelopmental disor-
ders [34]. It has been reported that the expression of
COX7C was decreased in total homogenates of the en-
torhinal cortex in AD stages V-VI [35]. However,
RPS17 and HINT1 have not been studied in AD, which
should be investigated in the future. Collectively, these
8 genes were potential biomarkers for pathogenesis of
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AD and they could be further explored in AD
researches.

In addition, GO and KEGG pathway enrichment
analyses were performed on the 42 shared genes in
order to obtain more function information of them.
GO terms were significantly enriched, including 51
Biological Process terms, 52 Cellular Component
terms and 16 Molecular Function terms. The 42
genes were significantly enriched in 12 KEGG path-
ways, including Oxidative phosphorylation, Non-
alcoholic fatty liver disease (NAFLD), Parkinson dis-
ease and several other pathways. Some of the KEGG
pathways were related to the previous studies to
some extent and they partially provided new ideas
for future researches. For example, several studies
have demonstrated the complicated roles of oxidative
stress in the pathogenesis and progression of AD
[36-38], which could be linked to the oxidative
phosphorylation pathway in further studies. Regard-
ing Non-alcoholic fatty liver disease (NAFLD) path-
way, it has been reported that NAFLD-induced
chronic inflammation induced neurodegeneration
diseases in wild-type mice [39], which could also be
correlated with inflammation in AD as inflammation
had been evidenced to be associated with the patho-
genesis of AD [40, 41]. In addition, some genes were
significantly enriched in Parkinson disease pathway,
which indicated that Parkinson disease and AD
might be explored together, as age-related neurode-
generation diseases [42, 43]. Collectively, these path-
ways have provided more information for the further
exploration of AD in the near future and we would
also spare no effort to continue the researches on
AD.

Conclusions

In conclusion, via integrating the results of WGCNA
and DEGs, 8 genes, including RPS17, RPL26, RPS3A,
RPS25, EEF1B2, COX7C, HINT1 and SNRPG, were fur-
ther screened and evidenced to be associated with the
occurrence of AD. These genes were significantly
enriched in Oxidative phosphorylation, NAFLD and
some other pathways. Our findings will provide more in-
formation for this complicated neurodegenerative
disorder.
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vertical axis denoted the true positive rate.
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