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Abstract

Immunotherapy, especially anti-PD-1, is becoming a pillar of modern muscle-invasive bladder cancer (MIBC)
treatment. However, the objective response rates (ORR) are relatively low due to the lack of precise biomarkers to
select patients. Herein, the molecular subtype, tumor mutation burden (TMB), and CD8+ T cells were calculated by
the gene expression and mutation profiles of MIBC patients. MIBC immunotypes were constructed using clustering
analysis based on tumor mutation burden, CD8+ T cells, and molecular subtypes. Mutated genes, enriched
functional KEGG pathways and GO terms, and co-expressed network-specific hub genes have been identified. We
demonstrated that ORR of immunotype A patients identified by molecular subtype, CD8+ T cells, and TMB is about

36% predictable. PIK3CA, RB1, FGFR3, KMT2C, MACF1, RYR2, and EP300 are differentially mutated among three
immunotypes. Pathways such as ECM-receptor interaction, PI3K-Akt signaling pathway, and TGF-beta signaling
pathway are top-ranked in enrichment analysis. Low expression of ACTA2 was associated with the MIBC survival
benefit. The current study constructs a model that could identify suitable MIBC patients for immunotherapy, and it
is an important step forward to the personalized treatment of bladder cancers.
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Introduction

As one of the most common genitourinary malignancies,
bladder cancer (BLCA) affects about 549,000 people glo-
bally with 200,000 deaths, in 2018 [1]. A quarter of pa-
tients with BLCA are muscle-invasive bladder cancer
(MIBC) with a higher risk of metastasis, in which cancer
cells may spread to regional pelvic lymph nodes and/or
visceral sites, causing the disease incurable [2]. Radical
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cystectomy (RC) with neoadjuvant cisplatin-based
chemotherapy (NAC) is the standard first-line multi-
modal treatment for MIBC patients, yet roughly 60% of
MIBC patients do not have a significant treatment re-
sponse [3]. In addition, due to toxicity, many patients
are unsuitable or unwilling to receive cisplatin treatment
[4].

Recently, great progress has been made in the field of
anti-cancer immunotherapy. The utilization of immune
checkpoint inhibitors such as anti-PD-1/PD-L1 relatively
improved the treatment of MIBC [5]. To be specific, sev-
eral PD-1/PD-L1 inhibitors, such as Pembrolizumab,
Atezolizumab, Durvalumab, Nivolumab, and Avelumab,
are approved by the US Food and Drug Administration
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(FDA) in clinical use for advanced MIBC patients, who
failed prior platinum-based chemotherapy [6]. Although
the efficacy of immunotherapy has been demonstrated,
the number of MIBC patients who respond to immuno-
therapy is limited. In clinical trials, Nivolumab, a human
IgG4 PD-1 antibody, has only below 20% of durable re-
sponse rate in patients with metastatic or locally ad-
vanced urothelial carcinoma [7].

In order to identify appropriate candidates for im-
munotherapy and tailor immunotherapy treatment strat-
egies, some biomarkers are being developed based on
tumor PD-L1 expression, tumor mutational burden
(TMB), tumor-infiltrating lymphocytes (TILs), and sev-
eral other factors [8]. As shown by several studies, pa-
tients with high tumor PD-LI levels showed better
response rates to immunotherapy and longer survival
[9]. Immunotherapy acts in part by reinvigorating a pre-
existing tumor immune response, and the density of
TILs, especially CD8+ T cells, is a strong positive prog-
nostic indicator [10]. TMB refers to the number of som-
atic mutations per 1 million bases [11], and tumor cells
with high TMB may have more neoantigens which could
be recognized by T cells and incite an anti-tumor re-
sponse [12]. More recently, attempts to jointly use TMB
and tumor-infiltrating T cells to identify PD-1 antibody
responders, that has been reported in 22 different tumor
types [13]. Apart from these biomarkers, molecular sub-
type has been considered to be a novel approach for iden-
tifying candidates for immunotherapy in different studies
[14-16]. In MIBC, patients can be mainly and obviously
classified into luminal and basal subtypes by RNA expres-
sion profiling, where the patients in basal subtype are
more associated with the epithelial-mesenchymal transi-
tion (EMT), immune-related pathways, and unfavorable
survival than luminal subtype [17-19]. However, more in-
vestigations are needed to confirm the role of molecular
subtypes in predicting the treatment response of MIBC
patients to immunotherapy.

In the era of precision immunotherapy, it is of utmost im-
portance to construct immunotype model that could indi-
cate the response rate to immunotherapy and to identify
mediators that play key determining roles. Models and bio-
markers could influence immunotherapy response,
personalize cancer treatment, minimize side effects, decrease
treatment cost, and avoid immune-related adverse events.

To tackle the above-mentioned problems, the current
study attempts to (i) construct superior immunotype in
MIBC patients by TMB, MIBC-specific immune cell in-
filtration, and molecular subtype, and (ii) predict the
biomarker that can characterize the immunotype. For
those immunotypes, the corresponding mutational
genes, enriched functional KEGG pathways and GO
terms, and hub genes in the co-expression network were
proposed.
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Materials and methods

Data acquisition

A level-3 RNA-sequencing data plus clinical information
were obtained from The Cancer Genome Atlas (TCGA)
data portal, and the corresponding mutation annotation
file (MAF) was retrieved using the ‘TCGAbiolinks’ R
package by specifying the “mutect” pipeline [20]. IMvi-
gor210 II trial, a cohort of 348 MIBC patients treated
with Atezolizumab (PD-L1 inhibitor), was collected from
the previous study, including the gene expression data,
clinical information, and immune therapy response re-
cords [21]. Immune cell proportions (such as B cells,
dendritic cells, macrophages, neutrophils, NK cells,
CD4+ T cells, and CD8+ T cells) against each sample
were calculated by CIBERSORT algorithm, with 1000
permutations [22]. Only mutations in coding genes were
retained and the TMB was calculated as follows:

M
TMB = —
38

where M is the total number of mutations in each sam-
ple, and 38 represents the number of megabases of hu-
man exome.

Clustering analysis

The molecular subtype data (like basal and luminal clas-
sification) of 403 patients used in this study were ob-
tained from our previous study, and luminal and basal
subtypes were transformed to 0 and 1, respectively [19].
In terms of CD8+ T cells and TMB, the values of CD8+
T cells and TMB of each patient were assigned to num-
bers 0 and 1 based on their median value (0: lower than
median value; 1: higher than median value). Next, we
constructed the immunotypes following the basic idea of
Cluster of Cluster (CoC) [23] analysis based on the fol-
lowing 3 platforms: molecular subtype, TMB, and CD8+
T cells. Briefly, subgroups defined from each platform
were coded into a series of indicator variables, resulting
in a matrix of 1 and 0 (M;;) whose each element E;; can
be defined as

1,
Eij= {o,

where C; represent the clusters from each platform (i.e.
subtype_1, subtype_2, TMB_1l, TMB_2, CD8+
_T_cell_1, CD8 + _T_cell_2, etc) and i is in the range
from 1 to 403. Next, a well-known consensus clustering
(CC) algorithm was performed on the M;; matrix using
the “ConsensusClusterPlus” package. The optimal num-
ber of clusters (K) was estimated by commonly used
methods including cumulative distribution function
(CDF) and relative change in area under CDF curve [24].

if E;j
otherwise

e Cj
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Training a random forest model and its validation
Random forest (RF) model, one of the most popular ma-
chine learning methods used for supervised learning,
was used to train on the TCGA dataset and validate on
the IMvigor210 dataset. Specifically, on the basis of the
736 immune-related gene expression profile in the
TCGA dataset, we trained the regression RF model that
predicts the immunotype A, B, and C, with the optimal
parameters of “mtry =3” and “ntree =500". After com-
pleting the training process, the RF model was used to
predict immunotypes based on the expression profile of
the immune-related genes on the IMvigor210 dataset.
Seven hundred thirty-six immune-related gene list was
downloaded from the previous study (https://www.ncbi.
nlm.nih.gov/geo/query/acc.cgi?acc=GPL25507).

Gene network analysis

To reduce outliers and simplify the calculation burden,
we first retained 4677 prognostic-associated mRNAs se-
lected by the univariate Cox proportional hazards re-
gression (P <0.05). A weighted correlation network
analysis (WGCNA) was further performed on
prognostic-associated mRNAs to construct scale-free
gene co-expression networks, by using the R package
“WGCNA”, with min-ModuleSize of 20, merge-
CutHeight of 0.25, and unsigned topological overlap
measure (TOM) [25]. An appropriate soft-threshold
power was selected according to standard scale-free dis-
tribution (scale independence and mean connectivity).
The module eigengenes (MEs) based on the first princi-
pal component were calculated for each module to
measure the correlation between modules and clinical
information including immunotype. The experimental
protein-protein interactions (PPIs) data for genes within
the immunotype-related module were retrieved from the
STRING database, by specifying the interaction score of
more than 0.4 (http://string-db.org/). The network was
visualized within Cytoscape software (version 3.5.1.), and
the hub genes were selected based on the Matthews cor-
relation coefficient (MCC) score by using “cytoHubba”

plug.

Statistical analysis

The Kaplan—Meier model available in R package “sur-
vival” was used to calculate overall survival (OS) plus
log-rank test to compare survival time between different
groups. Kyoto Encyclopedia of Genes and Genomes
(KEGG) and Gene Ontology (GO) enrichment analysis
were performed by R package “clusterprofiler”, with the
cut-off value of FDR less than 0.05 [26]. The MAF data
was analyzed using an R package ‘maftools’ [27]. Pearson
correlation coefficient (PCC) analysis was used to evalu-
ate correlations between continuous variables (e.g. TMB,
CD8+ T cells, genes expression). For analyzing the levels
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of CD8 + T cells and TMB in different groups, the Wil-
coxon rank-sum test was used to compare the average
between the two groups, and the Kruskal-Wallis test was
used for the comparison of more than two groups. Clin-
ical characteristics were estimated by univariate Cox re-
gression followed by multivariate Cox regression to
identify independent prognostic factors. The chi-square
independence test evaluates if two categorical variables
such as immunotypes and pathological stages are related
in any way. All statistical analyses in this study was per-
formed using Python version 3.7.1 (https://www.python.
org/) or R version 3.4.3 (https://www.r-project.org/), un-
less mentioned otherwise. Conventionally, the P <0.05
was regarded as statistically significant.

Results

Prognostic importance of CD8+ T cells and TMB

Clinical characteristics of 403 patients with muscle-
invasive bladder cancer (MIBC) used in this study were
introduced in Table S1. The heatmap plot demonstrated
that the expression patterns of immune checkpoint mol-
ecules (e.g. PD-1, PD-L1, CTLA-4, HAVCR-2, and LAG-
3) distinguished the basal and luminal subtypes and that
the basal tumors expressed higher levels of immune
checkpoint molecules than luminal subtype (Fig. 1a). The
Kaplan-Meier (K-M) survival analysis showed that TMB
and CD8+ T cells were substantially associated with the
MIBC prognosis (Fig. 1b,c). To be specific, the higher
level of CD8+ T cells and TMB are associated with im-
proved overall survival (OS). Simultaneously, we ob-
served that B cells, dendritic cells, macrophages,
neutrophils, NK cells, and CD4+ T cells were not statis-
tically significantly correlated with the MIBC prognosis
(P <0.01) (Fig. SIA-F). Univariate and multivariate Cox
regression analyses further confirmed that CD8+ T cells
(HR = 0.664, 95% CI = 0.489-0.902, P = 0.008) and TMB
(HR =0.679, 95% CI = 0.500-0.921, P < 0.0129) were sig-
nificantly associated with the OS, indicating again CD8+
T cells and TMB are independent prognostic predictors
for the survival of MIBC patients. Besides, age (HR =
1.033, 95% CI=1.017 to 1.049, P <0.001), pathological
stage (HR =2.380, 95% CI = 1.596-3.548, P < 0.001), and
molecular subtype (HR =0.586, 95% CI =0.426-0.805,
P <0.001) were found to be independent prognostic pre-
dictors (Table S2).

Correlation analysis of CD8+ T cells and TMB

CD8+ T cells and TMB are nonidentical when com-
paring the median value of the clinicopathological
characteristic groups of MIBC patients. Patents with
high CD8+ T cells, as shown in Fig. 1d, were charac-
terized by male, high pathological stage, and response
to primary therapy, whereas high TMB was character-
ized by luminal subtype, high grade, and response to
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Fig. 1 Classifying MIBC patients into three immunotypes. a The heat map shows the clinical features of the two molecular subtypes as well as
the expression distribution of molecular subtype and immune-related biomarkers. b The Kaplan-Meier (K-M) plot indicates that MIBC samples with
a high level of CD8+ T cells have a better overall survival profile than those with low CD8+ T cells. ¢ The K-M plot indicates that MIBC samples
with a high level of TMB have a better overall survival profile than those with low TMB. d Distribution of CD8+ T cells among the molecular
subtype, age, gender, stage, grade, and primary therapy response groups in the TCGA dataset. e Distribution of TMB among the molecular
subtype, age, gender, stage, grade, and primary therapy response groups in the TCGA dataset. f The graphic depicting the relative change in area
under the CDF curve, which allows determining the optimal K of 3 by first “elbow” rule. g The consensus matrices with samples as both rows
and columns, ranging from 0 (never clustered together) to 1 (always clustered together)

=20

primary therapy (Fig. 1le). Importantly, PCC analysis
revealed that TMB and CD8+ T cells exhibited a
weak association (r =0.11, P <0.05) (Fig. S2A).
Through PCC analysis, we also observed that the cor-
relation between CD8+ T cells and immune check-
points, such as PD-L1, CTLA-4, PD-1, HAVCR-2,

LAG-3, is pronounced compared with TMB (Table
S3). Together, these results indicate that CD8+ T
cells and TMB may be independent indicators and
that CD8 + T cells likely have better predictive ability
than TMB when predicting the response to immune
checkpoint inhibitors in MIBC.
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Construction of MIBC immunotypes and their clinical
prognosis

The hierarchical consensus clustering was performed on
the TCGA dataset comprising 403 tumor samples and
three attributes (molecular subtype, TMB, and CD8+ T
cells), with key parameters as follows: reps = 100, inner-
Linkage = complete, clusterAlg = hc, maxK = 10, and dis-
tance = pearson. The optimum cluster number K of 403
samples was determined with delta area plots and con-
sensus cumulative distribution function (CDF) plots. Ac-
cording to the first “elbow” rule, the relative change in
area under CDF curve suggests the optimal K of 3 (Fig.
1f). Similarly, consensus CDF plots showed that the CDF
curve tended to be flat when K =3, indicating the opti-
mal K of 3 (Fig. S2B). In addition, the consensus cluster-
ing matrix suggested that the number of samples in the
three groups was relatively balanced, which is a desirable
result for further comparative analysis (Fig. 1g).

A heatmap depicturing immune cells, immune check-
point biomarkers, and TMB was provided, which clearly
showed (i) immunotype A was characterized by the high
expression of immunotherapy indicators such as im-
mune checkpoint genes, CD8+ T cells, and TMB; (ii)
immunotype B was characterized by low expression of
immune checkpoint genes and CD8+ T cells and a mod-
erate level of TMB; while (iii) immunotype C tends to
express high immune checkpoint genes, moderate CD8+
T cells, and low TMB (Fig. 2a, Fig. S2C,D). The survival
analysis revealed that the immunotype A conferred bet-
ter overall survival (OS) and immunotype B conferred
medium OS, while immunotype C exhibited a surprising
poorer OS (P <0.05, log-rank test) (Fig. 2b). Besides,
immunotype A was significantly associated with better
treatment outcomes, immunotype B was correlated with
low histologic grade, while immunotype C was corre-
lated with high tumor recurrence (Fig. S2E).

Clinical outcomes of immunotypes in IMvigor210 cohort
The IMvigor210 cohort including 348 MIBC patients
treated with Atezolizumab was used to further evaluate
the clinical benefit of the immune subtypes. The baseline
characteristics of the IMvigor210 cohort were described
in Table S4. The K-M survival analysis has confirmed
that immunotype A is associated with increased survival
rate for patients treated with Atezolizumab, immunotype
B is associated with medium survival rate, whereas
immunotype C poorer OS (Fig. 2c). These findings are
consistent with the results from the TCGA cohort, sug-
gesting again that it is rather appropriate to use our
method to distinguish patients.

It is to be noted that the objective response rate (ORR)
was defined as the proportion of patients who have a
partial or complete response to therapy. We found that
patients in immunotype A behaved better ORR to
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Atezolizumab, about 36%. In addition, immunotype B
exerted moderate ORR, about 19%, whereas immuno-
type C worst ORR, about 13% (Fig. 2d). Our results indi-
cated that the efficacy of immunotherapy is strongly
influenced by the molecular subtypes, immune check-
points, and the composition and abundance of CD8+ T
cells and TMB in the tumor microenvironment. In
addition, we built a user-friendly model, named as ‘rfPI’
(Random Forest to Predict Immunotypes), for predicting
the immunotype of MIBC patients, and it can be freely
accessed from https://immunotypes.shinyapps.io/shiny/.
The input data is a data frame, which contains the ex-
pression level of 736 immune-related genes. The output
for rfPI will be: i) the predicted immunotype; ii) the pre-
dicted response rate for immunotherapy; iii) the mutated
genes.

Identification of mutated genes in immunotypes

Genetic mutation is the basis of phenotype diversity
among immunotypes. We sought to explore the poten-
tial regulatory tumor mutation genes among immuno-
types. The mutation annotation file (MAF) of the
patients with MIBC in TCGA dataset was analyzed using
the R package “maftools”, and the summary of overall
mutation profile was illustrated (Fig. 3a-c). TTN, TP53,
KMT2D, MUCI6, ARIDIA, KDM6A, and SYNEI had a
high frequency mutation rate in all immunotypes (>
16%). There are immunotype-specific genes differentially
mutated as follows: (i) PIK3CA and RBI were found to
be mutated in immunotype A and immunotype C; (ii)
FGFR3, KMT2C, and MACF1 immunotype B; (iii) RYR2
was observed to be mutated in immunotype A; (iv) and
EP300 immunotype C.

Weighted Correlation Network Analysis (WGCNA)

Functional modules can, furthermore, reveal more ef-
fectively the consistent differences during MIBC tumori-
genesis and progression. WGCNA was performed on
4677 prognostic-specific mRNAs. According to scale in-
dependence and mean connectivity plot, we picked “8”
as the proper soft-thresholding power, which can raise
co-expression similarity to achieve consistent scale-free
topology (Fig. S2F,G). A cluster dendrogram revealing
nine modules highly co-expressed was provided, in
which each co-expression module was assigned by an ar-
bitrary brilliant color for reference, and the non-co-
expression group was designated as a gray color (Fig.
3d). The MEs based on the first principal component
were calculated for each module to assess the association
between modules and clinical information including
immunotype. The results, as visualized in Fig. 3e,
showed that the blue module containing 546 genes pos-
sessed the highest correlation with immunotype (r =
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0.27, P <0.01) as well as pathological stage (r =0.33,
P <0.01).

Analysis of enriched GO terms and KEGG pathways

We then investigated enriched pathways related to genes
within the blue module by performing GO and KEGG
enrichment analysis, and the top-ranked terms and path-
ways were visualized in Fig. 3f. Some Immune system-

related terms and pathways were largely identified, in-
cluding ECM-receptor interaction, PI3K-Akt signaling
pathway, focal adhesion, TGF-beta signaling pathway,
human papillomavirus infection, extracellular matrix
organization, skeletal system development, collagen-
containing extracellular matrix, endoplasmic reticulum
lumen, extracellular matrix structural constituent, and
glycosaminoglycan binding.
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eight hub genes we identified

Fig. 3 Genetic, transcriptome, and epigenetic characterization of MIBC immunotypes. a-c Genetic alterations in immunotype a, b, and c. d
Dendrogram generated using the WGCNA shows nine highly parsimonious modules e PCC matrix between MEs and clinical traits. Each row
corresponds to a module eigengene, each column corresponds to a trait, and each cell consists of the corresponding correlation and P-value.
Among them, the blue module was the most relevant to the MIBC immunotypes. f Bubble plots for both enriched 10 KEGG pathways and 15 GO
terms, for the blue module. g The protein-protein interaction network for genes within the blue module, and the green nodes represent the

Protein-protein network analysis

Cytoscape is an open-source and user-friendly software
platform for visualizing molecular interaction networks
and biological pathways. The experimental PPI between
those 546 genes, retrieved from the STRING database,
was visualized as a PPI network by Cytoscape software.
Subsequently, eight hub genes from the network were
identified based on the cut-off value of MCC score >5
(Fig. 3e). The Kaplan-Meier (K-M) survival analysis for
eight genes was conducted on both TCGA and the IMvi-
gor210 datasets to determine which of them is of prog-
nostic value indeed. Merely the low expression of
ACTA2, as shown in Fig. 4, was associated with the sur-
vival benefit for MIBC patients from both TCGA and
IMvigor210 datasets.

Discussion

Although several clinical trials demonstrate that immune
checkpoint inhibitors have been used with great success in
the treatment of muscle-invasive bladder cancer (MIBC),
the ORR in patients receiving Atezolizumab is quite low,
about 14.8% for the entire study population [28]. It is one
of the key challenges facing doctors today to stratify pa-
tients into subtypes that can obtain dramatic responses to
drugs that target PD-1/PD-L1 [7, 29, 30]. To tackle the
above problem, MIBC immunotypes improving the ORR
based on the multi-immunotherapy indicators were con-
structed using computational analysis.

CD8+ T cells play a major role in cancer immunity
through their capacity to kill malignant cells upon recog-
nition by T cell receptor of specific antigenic peptides
presented on the surface of target cells by human HLA-
I/B2M complexes [31]. Despite contributions by other
immune cell subsets, CD8+ T cells have emerged as a
predominant effector in most cancer immunotherapy
settings, and many immunotherapeutic strategies are de-
voted to stimulating, enhancing, and maintaining re-
sponses by tumor-reactive CD8+ T cells [32]. TMB has
been described as a powerful predictor of tumor behav-
ior and response to immunotherapy, and it is independ-
ent of PD-LI expression in patients with small-cell lung
cancer [33]. However, disease-specific TMB thresholds for
effective prediction of response in various other malignan-
cies are not well established [34]. Apart from some correl-
ation analysis, the underlying mechanism behind TMB
predicting sensitivity to immunotherapies is largely

unknown [34]. Besides, molecular subtypes may provide
independent and complementary information for predict-
ing immunotherapy response. Several studies have impli-
cated that basal and luminal subtypes are derived from
distinct progenitor cells and the basal subtype has a higher
ORR in the treatment of immunotherapy [7, 17, 18]. We
demonstrated that the basal subtype exerted a totally dif-
ferent expression pattern in immune checkpoint genes as
compared to the luminal subtype (Fig. la). Moreover,
based on immune biomarkers such as CD8+ T cells, PD-
L1, and TMB, the classification of human cancer into dif-
ferent immune types was recently proposed [7, 13, 35—
37]. Herein, using the immunotherapy indicators compris-
ing TMB, CD8+ T cells, and molecular subtype, we were
able to stratify MIBC into three immunotypes, namely,
immunotype A, immunotype B, and immunotype C.

The patients in immunotype A conferred the highest
ORR and expressed a high level of immune checkpoints,
TMB, and CD8+ T cells, designating that those patients
were highly recommended to receive immunotherapy. It
is to the fact that immunotype A here resembles ‘hot tu-
mors’ previously defined [38]. The patients in immuno-
type B showed lower ORR, and they expressed a low
level of immune checkpoints and CD8+ T cells and a
moderate level of TMB. Whether this pattern is similar
to “cold tumors” characterized by failed T cell priming
(low tumor mutational burden, poor antigen presenta-
tion and intrinsic insensitivity to T cell killing), still re-
quires further study [38-40]. The treatment strategies
for ‘cold tumors’ are converting them into ‘hot tumors’
by enhancing T cell responses via cancer stem cells
(CSCs) vaccine or adoptive T cell transfer [38, 41]. On
the other hand, patients in immunotype C showed the
lowest ORR. Interestingly, they expressed high immune
checkpoints, moderate CD8+ T cells, but low TMB, and
this group of patients may be not appropriated for
immunotherapy.

Seven genes (TTN, TP53, KMT2D, MUCI16, ARIDIA,
KDM®6A, and SYNEI) were commonly mutated across
three immunotypes, thus getting recognized as cancer
predisposition genes. There are another seven genes
equally important: PIK3CA, RB1, FGFR3, KMT2C,
MACFI, RYR2, and EP300. These genes are differen-
tially mutated among three immunotypes, cultivating
a more detailed and precise understanding of muta-
tion rates of MIBC immunotype. The modules of a
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Fig. 4 Kaplan—Meier survival analysis. K-M plot for eight hub genes, as to TCGA (a-h) and IMvigor210 dataset (i-p). The Kaplan-Meier plots
confirmed that patients with low expression of the ACTA2 genes, as shown in the green frame, behave a better overall survival profile

co-expression network are more stable than individual
genes because the overall function of a module can
remain the same when individual gene expression can
be replaced by other genes with similar redundant
functions [42].

Network analysis identified eight hub genes (ACTA2,
ACTA1, COLIAL, COLIA2, COL5A1, DCN, SPARC,
VIM) for the module associated with MIBC immuno-
type. Consistent with our results, pathological stage-
related hub gene role of COLIAI, COL1A2, COL5AI
were reported earlier by another group [43]. The hub

gene role of ACTAI was found in prostate cancer [44]
and the prognostic role of ACTAI was found in head
and neck squamous cell carcinoma (HNSCC) [45]. The
experimental study suggests that decorin (DCN) does
not affect directly anti-tumoural immune response, yet
is required for efficient invasiveness in vitro [46]. Hub
gene role of DCN, associated pathological stage, has
been reported in our previous study [42]. Studies on
DCN knockout mice have established that a lack of DCN
is permissive for tumor development, and it is regarded
as a tumor suppressor gene [47]. A previous study
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identified a 3-gene panel of epigenetic biomarkers com-
prising VIM, which can accurately detect bladder cancer
in urine sediments and discriminate it from renal epithe-
lial tumors and prostate cancer [48]. In another study,
the correlation between the methylation levels of
EOMES, HOXA9, POU4F2, TWIST1, VIM, and ZNF154
in urine specimens and bladder cancer recurrence sur-
veillance was discovered by real-time PCR [49]. A previ-
ous study found that loss of SPARC was associated with
an inflammatory phenotype of tumor-associated macro-
phages and fibroblasts, with concomitant increased acti-
vation of urothelial and stromal NF-kB and AP1 in vivo
and in vitro [50]. In human bladder tumor tissues, the
frequency and intensity of SPARC were inversely corre-
lated with disease-specific survival. SPARC can reduce
carcinogen-induced inflammation and accumulation of
reactive oxygen species as well as urothelial cell prolifer-
ation, and gene expression of SPARC significantly corre-
lated with matrix metalloproteinase-2 gene expression
[50, 51]. The multi-faceted contextual roles of SPARC
were discussed in detail in a previous review [52], and
the overall hypothesis was that SPARC exhibited differ-
ential expression and functions in the bladder cancer
microenvironment. ACTA2 was previously found to be
associated with the prognosis of bladder cancer [53].
Consistent with the earlier reports, in our study, the
prognostic value of ACTA2 was validated both in the
TCGA dataset and the IMvigor210 dataset.

Of note, the immunotypes in the study are con-
structed based on the TCGA cohort which does not
receive immune checkpoint therapy. Although IMvi-
gor210, an independent cohort, treated with immuno-
therapy has been used, more clinical trials of immune
checkpoint blockade in prospectively collected cohorts
are necessary. Besides, instead of evaluating all kinds
of lymphocyte, only the CD8+ T cell fraction was se-
lected to construct immunotypes, which might poten-
tially ignore the effect of other immunotherapy
biomarkers such as NK cells and macrophage [54,
55]. The deeper investigation of the role of
immunotype-specific KEGG pathways or gene ontol-
ogy terms we identified, in the human immune sys-
tem diagram, will be beneficial in the context of
understanding the underlying immune mechanisms
that respond to bladder cancer, and it will be taken
into account in our further research.

In conclusion, our study takes full advantage of veri-
fied immunotherapy indicators such as molecular sub-
type, CD8+ T cells, and TMB to jointly stratify samples
into distinct immunotherapy response subgroups,
namely immunotype A, B, and C. Among them immu-
notype A releases best clinical outcome with ORR of
36%. Together these findings will provide a new avenue
for emerging immunotherapy strategies.
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