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Microarray data analysis reveals gene
expression changes in response to ionizing
radiation in MCF7 human breast cancer
cells
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Abstract

Background: The aim of this study was to identify potential therapeutic target genes for breast cancer (BC) by the
investigation of gene expression changes after ionizing radiation (IR) in BC cells. Gene expression profile GSE21748,
including BC cell line MCF-7 samples at different time points after IR treatment, were downloaded from Gene Expression
Omnibus. Differentially expressed genes (DEGs) were identified in different time points following IR compared with cell
samples before IR, respectively. Gene ontology functions and The Kyoto Encyclopedia of Genes and Genomes pathways
of the overlapping DEGs were enriched using DAVID. Transcription factor (TFs)-encoding genes were identified from the
overlapping DEGs, followed by construction of transcriptional regulatory network and co-expression network.

Results: A total of 864 overlapping DEGs were identified, which were significantly enriched in regulation of cell
proliferation and apoptosis, and cell cycle process. We found that FOXD1, STAT6, XBP1, STAT2, LMO2, TFAP4, STAT3, STAT1
were hub nodes in the transcriptional regulatory network of the overlapping DEGs. The co-expression network of target
genes regulated by STAT3, STAT1, STAT6 and STAT2 included some key genes such as BCL2L1.

Conclusion: STAT1, STAT2, STAT3, STAT6, XBP1, BCL2L1, CYB5D2, ESCO2, and PARP2 were significantly affected by IR and
they may be used as therapeutic gene targets in the treatment of BC.

Keywords: Breast cancer, Differentially expressed gene, Gene expression omnibus, Therapeutic gene targets,
Transcriptional regulatory network

Background
Breast cancer (BC), one of the most common cancers among
women, accounts for about 25% of all kinds of cancers [1, 2].
Mammary gland is not an important organ to maintain hu-
man life activities and BC in situ is not fatal. However, due
to the loss of the characteristics of normal cells, the cells are
loosely connected and easy to fall off. Once detached, free
cancer cells can spread throughout the body by the blood or

lymph, forming metastases that threaten life [3]. Despite
great improvements in screening, diagnosis and treatment
strategies, the prognosis and survival outcomes for breast
cancer patients remain unsatisfactory [4].
In recent year, high-dosage ionizing radiation (IR) is con-

sidered to be an effective treatment for BC. Radiotherapy
can significantly reduce local recurrence, BC specific mor-
tality and total mortality [5, 6]. IR is radiation that carries
enough energy to make the electrons in atoms or molecules
of a material into a free state, thus ionizing those atoms or
molecules [7]. In briefly, the idea behind IR therapy is that
rapidly proliferating cancer cells are more sensitive to
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radiation than normal cells, which can repair themselves
more quickly and maintain their normal function [8, 9]. So
the goal of IR therapy is to inhibit the proliferative potential
of cancer cells and lead to cell death, while reducing IR up-
take by normal cells [10].
The response of cells to IR is a dynamic process from

growth stagnation to apoptosis. And IR-induced cellular
effects include sister chromatid exchange, pigment dis-
tortion, apoptosis, micronucleation, transformation, mu-
tation and gene expression alteration [11]. In briefly,
cancer cell apoptosis is achieved by DNA strand damage
or indirect production of free radicals after received
high-dosage IR, while the production of free radicals can
indirectly damage DNA [12]. This damage is called
repair-resistant or non-repairable [6]. The DNA damage
response is generally activated when cells respond to
these challenges. And the process of DNA damage re-
sponse includes coordinating the transmission of DNA
damage signals, triggering DNA repair and cell survival
or apoptosis [13]. The cell response to IR is mediated
by genes that control and regulate complex regulatory
pathways [14]. Detection of changes in gene expression
is an effective method to understand the mechanism of
the above reaction. The research on transcriptional
gene regulation of IR is mainly to understand how the
human body reacts to IR and how radiation hazards
develop.

In the present study, microarray data of gene expres-
sion in BC cells at different time points after IR were
downloaded from Gene Expression Omnibus (GEO)
database, and further differentially expressed genes
(DEGs) were screened. Gene Ontology (GO) and The
Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways of the overlapping DEGs were analyzed. Then
key transcription factor (TFs)-encoding genes were
screened from the overlapping DEGs, followed by con-
struction of transcriptional regulatory network and co-
expression network, with the aim to identify potential
therapeutic target genes for BC.

Results
Overlapping DEGs analysis
To determine the DEGs after IR treatment in breast can-
cer, a microarray dataset GSE2178, obtained from MCF-
7 human breast cancer cells, was downloaded from
GEO. We obtained expression information of 18,179
genes from 20 samples. Box plots showed the median of
expression value approximated a straight line, indicating
good normalization (Fig. 1a). Totally, 1250 DEGs (592
down-regulated genes and 658 up-regulated genes) were
identified after IR at day 1, 3405 DEGs at day 2 (1770
down-regulated genes and 1635 up-regulated genes),
3597 DEGs at day 3 (1773 down-regulated genes and
1824 up-regulated genes), and 6746 DEGs at day 4 (3477

Fig. 1 Identification of differentially expressed genes (DEGs). a, box plot of data after normalization. The horizontal axis refers to the sample name
and longitudinal axis refers to expression values. The black line in box was the median of each set of data, through which we could determine
the extend of standardization of data. The black line in box was almost in the same line which indicates good normalization. b, venn diagram of
DEGs at different time points. c, heat map of overlapping DEGs. Red indicates up-regulation and green indicates down-regulation
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down-regulated genes and 3269 up-regulated genes)
compared with the control group, respectively (Table 1).
Venn diagram of Up-DEGs indicated that 413 overlap-
ping DEGs were up-regulated at four different time
points (Fig. 1b). Venn diagram of Down-DEGs indicated
that 451 overlapping DEGs were down-regulated at four
different time points (Fig. 1b).
From the heat map of the overlapping DEGs (Fig. 1c), we

found that there was difference in DEGs expression pat-
terns between the IR-group and control-group. The four
samples on the first day post-IR or on the fourth day after
radiotherapy were clustered into one category, respectively.
The differences between the eight samples on days 2 and 3
were not significant. It was obviously observed that the ex-
pression of genes originally up-regulated in breast cancer
began to be down-regulated after radiotherapy. It can be
clearly seen from the depth of green in the Fig. 1c that the
degree of down-regulation gradually deepened from the
first day of the fourth day after radiotherapy. The expres-
sion level of genes originally down-regulated in breast
cancer was up-regulated after radiotherapy, and the up-
regulated level was significantly increased over time.

GO and pathway enrichment analysis
In order to analyze the function of DEG and the in-
volved pathways, DAVID was used to observe significant
enrichment of these genes in multiple KEGG and GO
terms. Results showed that the overlapping up-regulated
DEGs were enriched in biological processes such as cell
proliferation, energy metabolism and apoptosis process
(Table 2); overlapping down-regulated DEGs were
enriched in biological processes as cell mitosis and DNA
damage repair (Table 3). Moreover, the overlapping up-
regulated genes were associated with the pathways such
as p53 signaling pathway, lysosome, and glutathione me-
tabolism; the overlapping down-regulated genes were as-
sociated with the pathways such as DNA replication, cell
cycle, and pyrimidine metabolism.

Construction of transcriptional regulatory network
A total of 12 genes that encoded TFs were found in the
overlapping up-regulated DEGs, and 24 genes that
encoded TFs were identified in the overlapping down-
regulated DEGs. According to the transcriptional regula-
tory network which was arranged in a radial pattern, we

found that 8 of the 36 TF encoding genes regulated
more target genes, including Forkhead Box D1 (FOXD1,
down-regulated, degree of connectivity = 444), Signal
Transducer And Activator Of Transcription 6 (STAT6,
down-regulated, degree of connectivity = 587), X-Box
Binding Protein 1 (XBP1, down-regulated, degree of
connectivity = 806), STAT2 (down-regulated, degree of
connectivity = 948), LIM Domain Only 2 (LMO2, down-
regulated, degree of connectivity =1130), Transcription
Factor AP-4 (TFAP4, down-regulated, degree of con-
nectivity = 1584), STAT3 (down-regulated, degree of
connectivity = 1635), and STAT1 (Signal Transducer
And Activator Of Transcription 1, down-regulated, de-
gree of connectivity =1968) (Fig. 2). Then we screened
the target genes in the overlapping DEGs regulated by
STAT1, STAT3, STAT2 and STAT6, and 14 genes were
obtained, which were then subjected to the co-
expression network construction (Fig. 3). Genes in the
co-expression network included BCL2 Like 1 (BCL2L1),
Cytochrome B5 Domain Containing 2 (CYB5D2), Tetra-
spanin 31 (TSPAN31), Galactosidase Alpha (GLA), ATP
Synthase Peripheral Stalk Subunit OSCP (ATP5O), SET
Nuclear Proto-Oncogene (SET), Centrosomal Protein 55
(CEP55), Vaccinia Related Kinase 1 (VRK1), Establish-
ment Of Sister Chromatid Cohesion N-Acetyltransferase
2 (ESCO2), Poly (ADP-Ribose) Polymerase 2 (PARP2)
and Pre-MRNA Processing Factor 4 (PRPF4).

Discussion
In this study, bioinformatics approach was used to predict
potential therapeutic targets for BC. We have identified
864 overlapping DEGs between IR groups and control
group, among which 413 genes were down-regulated and
451 ones were up-regulated. By constructing transcrip-
tional regulatory network, we found several key hub nodes
including STAT3, STAT6, XBP1, STAT2 and STAT1.
Moreover, co-expression network on the genes regulated
by STAT3, STAT6, STAT2 and STAT1 was constructed.
Studies showed that target genes regulated by STAT

proteins were important in cancers [15–17]. STAT family
proteins regulate the expression of a variety of genes in-
volved in cell growth, survival, differentiation and apop-
tosis [18, 19]. A total of seven STAT proteins have been
identified, including STAT1 2, 3, 4, 5a, 5b, and 6 [18, 19].
Studies have shown that some members of the STAT fam-
ily are tumor suppressor genes of BC, while others are on-
cogenes [20, 21]. Kolla et al. found that STAT1 was tumor
suppressors and lack of their expression may be involved
in tumorigenesis [22]. Jung et al. showed that STAT1 are
downstream targets in MCF-7 human BC cell and have
tumor suppressor function in BC [23]. Gooch et al. found
that STAT6 mediates the inhibition of interleukin-4
growth in human BC cells [24]. Studies found that STAT3
was an oncogene and over expressed in BC [25]. Behera

Table 1 Differentially expressed genes at different time points

Time
(Day)

Number of significantly regulated genes

Down-regulated genes Up-regulated genes Total

1 Day 592 658 1250

2 Day 1770 1635 3405

3 Day 1773 1824 3597

4 Day 3477 3269 6746
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Table 2 GO and KEGG enrichment results of the up-regulated genes

Category Term Count P Value

GOTERM_BP_FAT GO:0042127 ~ regulation of cell proliferation 30 0.001054887

GOTERM_BP_FAT GO:0042981 ~ regulation of apoptosis 29 0.002919188

GOTERM_BP_FAT GO:0043067 ~ regulation of programmed cell death 29 0.003382978

GOTERM_BP_FAT GO:0010941 ~ regulation of cell death 29 0.003532924

GOTERM_BP_FAT GO:0008104 ~ protein localization 26 0.048175685

GOTERM_CC_FAT GO:0005739 ~mitochondrion 37 0.001607912

GOTERM_CC_FAT GO:0005829 ~ cytosol 37 0.033925941

GOTERM_CC_FAT GO:0031090 ~ organelle membrane 35 0.006084384

GOTERM_CC_FAT GO:0005794 ~ Golgi apparatus 30 0.004372382

GOTERM_CC_FAT GO:0005626 ~ insoluble fraction 26 0.027666166

GOTERM_MF_FAT GO:0046983 ~ protein dimerization activity 21 0.003932064

GOTERM_MF_FAT GO:0042802 ~ identical protein binding 23 0.005855689

GOTERM_MF_FAT GO:0043028 ~ caspase regulator activity 4 0.017632928

GOTERM_MF_FAT GO:0048037 ~ cofactor binding 11 0.021981803

GOTERM_MF_FAT GO:0042803 ~ protein homo dimerization activity 13 0.027801507

KEGG_PATHWAY hsa04115:p53 signaling pathway 8 0.001608728

KEGG_PATHWAY hsa04142:Lysosome 10 0.002837651

KEGG_PATHWAY hsa05416:Viral myocarditis 7 0.009152891

KEGG_PATHWAY hsa00480:Glutathione metabolism 5 0.037989004

Table 3 GO and KEGG enrichment results of the down-regulated genes

Category Term Count P Value

GOTERM_BP_FAT GO:0007049 ~ cell cycle 99 3.71E-44

GOTERM_BP_FAT GO:0006259 ~ DNA metabolic process 80 6.51E-42

GOTERM_BP_FAT GO:0022402 ~ cell cycle process 76 9.75E-35

GOTERM_BP_FAT GO:0022403 ~ cell cycle phase 69 2.49E-37

GOTERM_BP_FAT GO:0000279 ~ M phase 63 1.32E-37

GOTERM_CC_FAT GO:0043232 ~ intracellular non-membrane-bounded organelle 125 2.16E-21

GOTERM_CC_FAT GO:0043228 ~ non-membrane-bounded organelle 125 2.16E-21

GOTERM_CC_FAT GO:0070013 ~ intracellular organelle lumen 106 1.53E-24

GOTERM_CC_FAT GO:0043233 ~ organelle lumen 106 9.59E-24

GOTERM_CC_FAT GO:0031974 ~membrane-enclosed lumen 106 4.56E-23

GOTERM_MF_FAT GO:0003677 ~ DNA binding 92 1.81E-08

GOTERM_MF_FAT GO:0000166 ~ nucleotide binding 91 6.03E-09

GOTERM_MF_FAT GO:0017076 ~ purine nucleotide binding 83 1.95E-09

GOTERM_MF_FAT GO:0032555 ~ purine ribonucleotide binding 82 5.64E-10

GOTERM_MF_FAT GO:0032553 ~ ribonucleotide binding 82 5.64E-10

KEGG_PATHWAY hsa03030:DNA replication 22 1.63E-25

KEGG_PATHWAY hsa04110:Cell cycle 26 1.22E-16

KEGG_PATHWAY hsa00240:Pyrimidine metabolism 13 3.29E-06

KEGG_PATHWAY hsa03430:Mismatch repair 12 1.60E-12
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et al found that osteopontin can promote tumor growth
of human BC cells by activating the JAK2/STAT3 signal-
ing pathway [26]. Bharadwaj et al. found that many bio-
logical processes were regulated by STAT3, including
cancer cell growth, apoptosis resistance, and DNA damage
response. Moreover, STAT3 has also been proved to be
the target of tumor therapy [27]. Wei et al. showed that
STAT6 was required for the inhibition of BC cell growth
[28]. In our study, according to the result of GO and path-
way analysis, we found that STAT1 STAT2, STAT3, and
STAT6 may be involved in the biological processes like
cell proliferation, apoptosis and programmed cell death.
Therefore, we speculated that STAT1 STAT2, STAT3
and STAT6 could be therapeutic targets for BC.
Among the key hub nodes there was also XBP-1, one

kind of basic region leucine zipper protein, which has re-
ported having a high expression level Estrogen receptor
alpha (ERα)-positive breast tumors [29–32]. ERα has
been a primary target of treatment as well as a prognos-
tic indicator for BC [33]. Studies have found that the
transcription level of XBP-1 is related to ERα and can
increase the transcriptional activity of ERα. This process
is achieved by regulating the chromatin unfolding in BC
[33, 34]. Furthermore, some studies showed that activa-
tion of ERα is responsible for many biological processes,

Fig. 2 Transcriptional regulatory network of transcription factors (TFs) and target genes. Triangle nodes refer to corresponding genes of TFs, dots
to the target genes regulated by TFs, purple dots that do not give name of genes were differentially expressed genes which were not focused
on in this study, the green dots to down-regulated genes, orange dots to up-regulated genes, the red triangles to up-regulated TFs coding
genes, blue triangles to down-regulated TFs coding genes

Fig. 3 Co-expression network of DEGs regulated by STAT1, STAT2,
STAT3 and STAT6. Edge refers to absolute value of similarity coefficient of
the expression of two genes in different samples was greater than 0.85
and p value < 0.05, the red edge represented the positive correlation,
green edge represented negative correlation, orange node represented
up-regulated genes, green nodes for down-regulated genes
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including cell growth and differentiation and pro-
grammed cell death [32, 35]. Overexpression of XBP-
1 has been identified in primary BC [36] while XBP-1
was down-regulated after radiotherapy treatment.
Thus, we suggested that XBP-1 may be a key regula-
tor underlying the development of BC.
Among the genes significantly affected by ionizing

radiation, we discovered BCL2L1, a gene involved in
the regulation of apoptosis [37], and CYB5D2 that in-
hibits cell proliferation and has a putative tumor sup-
pressor activity [38]. Anthony et al. suggested that
CYB5D2 was an inhibitor of cell proliferation and had
putative tumor suppressor activity [39]. BCL2L1 and
CYB5D2 were all in the CpG island, indicating lower
expression of them may be caused by the methylation
that leading to gene silencing. DNA methylation,
which primarily occurs at CpG sites plays an import-
ant role in transcriptional regulation and tumor initi-
ation [40, 41]. Overall, BCL2L1 and CYB5D2 could be
attractive targets for future BC therapies.
VRK1, ESCO2, and PARP2 were included in the

co-expression network (Fig. 3). Thereinto, VRK1 as
proliferation-promoting nuclear kinase has been re-
ported to play a role in cell migration and invasion.
Overexpression of VRK1 can promote a mesenchymal to
epithelial transition (MET) in cell culture, while VRK1-
mediated MET might facilitate the colonization of distal
sites by metastatic BC cells [42]. Additionally, the effect
of VRK1 to protect against DNA damage was deter-
mined by studying the effect of its knockdown on the
formation of DNA repair in response to treatment with
IR in BC cell line [43]. ESCO2 has been described as
a regulator of mitosis and required for DNA damage
repair [44, 45]. As a mitosis regulator, ESCO2 could
uniquely promote cohesion between sister chromatids
[46]. GO analysis showed that PARP2 and ESCO2
mainly involved in the metabolic process of DNA and
could respond to DNA damage repair. All the results
suggested that VRK1, ESCO2 and PARP2 might
participate in the process of resistant BC and could
be used as new drug targets since these genes may
contribute to cell protection against DNA damage.

Conclusions
In conclusion, the STAT1, STAT2, STAT3, STAT6,
XBP1, BCL2L1, CYB5D2, ESCO2, and PARP2 may be an
important component in the progression and develop-
ment of BC. As potential specific targets for the treat-
ment of BC, they may play an important role.
Meanwhile, necessary clinical validation trials are also a
key part of verifying the accuracy of these potential
therapeutic targets.

Methods
Affymetrix microarray data
Based on the platform of GPL6104 (Illumina humanRef-
8 v2.0 expression beadchip) which was deposited in
GEO (http://www.ncbi.nlm.nih.gov/geo/), the expression
profile GSE21748 was obtained [47]. MCF-7 samples in
this study were exposed to γ-ray with a 137Cs γ-ray
source at a dose rate of 3.0 Gy/min. Samples which were
treated with IR after 1 day, 2 day, 3 day, 4 day and no
treatment (0 day) were collected. Each time point in-
cluded 4 repeat samples. We also downloaded the raw
data and annotation files from GEO database.
Probes with missing expression values were removed,

the probe name was converted to gene name using the
platform annotation information, and the average ex-
pression values of different probes that corresponded to
the same gene were considered as the expression value
of this gene. In addition, the data were normalized using
the median method and the data distribution was dis-
played using box plots. Then, the DEGs between IR-
group and control-group (day0) were analyzed by limma
package in R [48]. Using Beniamini-Hochberg false dis-
covery rate (FDR), the multiple testing correction was
performed [49]. The DEGs with adjusted p-value < 0.05
and |log fold change (FC)| > 2 were considered to be
significant.

Overlapping DEGs analysis
Venn diagrams of up-DEGs and down-DEGs at different
time points were performed, respectively. The common
DEGs were selected. Based on the probe information in
the download file, the expression value of each group’s
overlapping data was selected. Based on the Euclidean
distance, the R language pheatmap package (http://cran.
r-project.org/web/packages/pheatmap/index.html) was
used for Hierarchical clustering [50] of the overlapping
DEGs [51]. The heat map was used as the result display.
Using Duplexing cluster, genes having similar expression
levels were collected together for a further research.

Gene ontology (GO) and pathway enrichment analysis
In this study, GO function and Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway of the overlapping DEGs
were analyzed using The Database for Annotation,
Visualization and Integrated Discovery (DAVID, version 6.8,
https://david.ncifcrf.gov/) with the threshold of p-value < 0.05.

Transcriptional regulatory network analysis
The genes encoding TFs were screened from the collec-
tion of the overlapping DEGs based on the information
provided by Transcription Factor Database (TRANSFAC
) [52]. The interactions between target genes and tran-
scription factors (TFs) were predicted using TF binding
sites information from the UCSC database [53]. Using
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Cytoscape, the transcriptional regulatory network was
constructed [54]. The calculation of the connectivity of TF
nodes, the selection of key TF and key target genes was
carried out by using Igraph package. In addition, func-
tional analysis of key genes was performed in combination
with expression trend information. Then, we selected tar-
get genes regulated by significant TFs from the overlap-
ping DEGs, and calculated the correlation coefficient
between them. The co-expression gene pairs with Pearson
similarity coefficient > 0.85 and p-value < 0.05 were se-
lected and used to build the co-expression network.
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