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Abstract

Background: Non-small cell lung cancer (NSCLC) is the major type of lung cancer with high morbidity and poor
prognosis. Erlotinib, an inhibitor of epidermal growth factor receptor (EGFR), has been clinically applied for NSCLC
treatment. Nevertheless, the erlotinib acquired resistance of NSCLC occurs inevitably in recent years.

Methods: Through analyzing two microarray datasets, erlotinib resistant NSCLC cells microarray (GSE80344) and
NSCLC tissue microarray (GSE19188), the differentially expressed genes (DEGs) were screened via R language. DEGs
were then functionally annotated by Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes
(KEGG) analysis, which up-regulated more than 2-folds in both datasets were further functionally analyzed by
Oncomine, GeneMANIA, R2, Coremine, and FunRich.

Results: We found that matrix metalloproteinase 1 (MMP1) may confer the erlotinib therapeutic resistance in NSCL
C. MMP1 highly expressed in erlotinib-resistant cells and NSCLC tissues, and it associated with poor overall survival.
In addition, MMP1 may be associated with COPS5 and be involve in an increasing transcription factors HOXA9 and

PBX1 in erlotinib resistance.

Conclusions: Generally, these results demonstrated that MMP1 may play a crucial role in erlotinib resistance in
NSCLC, and MMP1 could be a prognostic biomarker for erlotinib treatment.
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Introduction

Lung cancer is the primary cancer-related death world-
wide [1, 2]. Non-small cell lung cancer (NSCLC) is the
main type of lung cancer, including squamous cell car-
cinoma, adenocarcinoma, and large cell carcinoma,
which accounts for approximately 85% of all cases [3-5].
Currently, chemotherapy plays a crucial role in NSCLC
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treatment for most patients missing the optimal surgical
timing or with distant metastases [6]. Platinum-based
traditional drug chemotherapy is the standard first-line
therapy for patients with advanced lung cancer, which
improved the clinical outcomes modestly [7]. However,
it causes severe side effects, including nephrotoxicity,
neurotoxicity, and emetogenic effect, which usually re-
sulted in a poor quality of life [8]. In recent years,
molecular-targeted therapy has been developed into the
most promising strategy for NSCLC treatment, which
exerts greater anticancer efficacy and fewer side effects
than existing chemotherapy [9]. Erlotinib is a specific
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inhibitor of epidermal growth factor receptor (EGFR)
tyrosine kinase, which is given for locally advanced or
metastatic non-small cell lung cancer treatment [10-12].
It can block EGFR downstream signaling pathways such
as the signal transducer and activator of transcription 3
(STAT3) and mitogen-activated protein kinase (MAPK)
pathway [13]. Although erlotinib has been confirmed to
improve the prognosis of NSCLC patients, the majority
of these patients inevitably develop acquired resistance
with the prolonged treatment time [14, 15]. Several
mechanisms of erlotinib resistance have been identified,
including T790M gatekeeper EGFR-mutation, activation
of bypass-signaling (amplification of IGFIR and MET)
[16-20]. Besides, 40—60% of acquired resistance mech-
anism is EGFR T790M mutation in first generation
EGFR-TKIs [21]. However, the erlotinib acquired resist-
ance mechanisms for NSCLC patients without T790M
mutation is not clear.

Genomics microarray, a high-throughput platform,
represents a great powerful technology to analyze gene
expression comprehensively [22, 23]. In combination
with multiple bioinformatics analyses, microarray tech-
nology has been widely valued as a tool with great prom-
ise to obtain gene signals during tumor process, drug
resistance, and verify prognostic biomarkers in cancers
[24-26]. Detection and verification of vital targets of
drug resistance by using microarray analysis is a novel
research strategy and may in favor of uncovering the
underlying mechanisms of drug resistance.

Here, we acquired NSCLC of erlotinib resistance and
sensitive microarray (GSE80344) and NSCLC adjacent
and tumor tissue microarray (GSE19188) from the Gene
Expression Omnibus (GEO) online database (https://
www.ncbinlm.nih.gov/geo/), and these microarrays were
analyzed by bioinformatics methods. To functionally an-
notate the differentially expressed genes (DEGs), we
employed the Gene Ontology (GO) analysis and Kyoto
Encyclopedia of Genes and Genomes (KEGG) analysis.
Moreover, we further functionally analyzed the genes
which up-regulated more than 2-folds in both datasets by
Oncomine, GeneMANIA, R2 Coremine, and FunRich to
identify that MMP1 was a crucial gene of erlotinib resist-
ance in NSCLC. Meanwhile COPS5 was related to
MMPI, and both of their high expressions affected pa-
tients’ survival. Also, transcription factors HOXA9 and
PBX1 may play an important role in this process. Our
study provides a potential target and associated mecha-
nisms of erlotinib resistance and suggests that MMP1
could be a prognostic biomarker to erlotinib treatment.

Materials and methods

Microarray data

Two high-throughput sequencing and expression profil-
ing microarray datasets were obtained from the GEO
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database (https://www.ncbi.nlm.nih.gov/geo). In detail,
GSE80344 (1 =16) is composed of 12 erlotinib-resistant
and 4 erlotinib-sensitive samples in NSCLC and
GSE19188 (1 = 156, 3 datasets were abandoned) consists
of 91 human NSCLC and 62 adjacent normal tissues.
The platforms are GPL16699 and GPL570, respectively.

Processing of microarray data

The matrix files were downloaded using the R language,
and the adjacent and tumor tissue gene expression pro-
files (GSE19188) were analyzed using the Lima software
package to obtain DEGs. DEGs in the NSCLC erlotinib-
resistant gene expression profiles (GSE80344) were sub-
sequently analyzed using GEO2R (https: / /www.ncbi.
nlm. nih.gov/geo/geo 2r/). GEO2R is an online tool to
compare two or more groups of samples to identify
genes which differentially expressed across experimental
conditions. The DEGs cut-off criteria were set to P
values <0.01 and |log,FC|>2 (differential expression
multiples >4), where log,FC > 2 is upregulated, log,FC <
-2 was downregulated, and the error rate was reduced
using the Benjamini & Hochberg method. And a heat-
map of the DEGs was produced using Heml 1.0.3.7 heat-
map illustrator software and it showed the top 50
upregulated and downregulated genes, respectively. All
significant DEGs were shown in a volcano plot produced
by R software.

Functional and pathway enrichment analyses

Gene ontology analysis is a generally used method for
biological functional studies of high-throughput genom-
ics information and transcriptome data [27]. It primarily
annotates three ontologies: biological process (BP), cellu-
lar component (CC), and molecular function (MF).
Kyoto Encyclopedia of Genes and Genomes (KEGG)
stores a large amount of data on gene interactions and is
commonly used in the signal pathway analysis [28]. To
perform functional annotations on the up-expression
DEGs, we subsequently conducted the Database,
Visualization and Integrated Discovery (DAVID, https://
david.abcc.ncifcrf.gov/), to process the gene ontology
and Kyoto Encyclopedia of Genes and Genomes (KEGQG)
signal pathway analysis. As a result, P <0.01 was consid-
ered statistically significant.

Expression level analysis

The erlotinib sensitive and resistant NSCLC dataset
GSE38121, GSE69181 and GSE80344 were obtained
from the GEO database (https://www.ncbinlm.nih.gov/
geo), and analyzed by GEO2R (|log, (Fold change) | >1
and P<0.01). And the expression data (GSE7670 and
GSE10072) of MMP1 in normal tissues and tumor tis-
sues were obtained by the online analysis website Onco-
mine (https://www.oncomine.org/resource/login.html).
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In detail, GSE7670 (n=57) is composed of 30 normal
lung tissues and 27 lung adenocarcinoma tissues, and
GSE10072 consists of 49 normal lung tissues and 58
lung adenocarcinoma tissues. And the screening condi-
tions were |log, (Fold change) | >2 and P<0.0001. To
confirm the expression level of MMP1, GEPIA2 online
database was applied based on TCGA and GTEx data.
The lung adenocarcinoma (LUAD) and lung squamous
cell carcinoma (LUSC) datasets were selected, and genes
with |log, (Fold change) | >2 and P <0.01 were consid-
ered significant. We also analyzed the protein expression
of the hub genes, COPS5, between NSCLC and normal
lung tissues using the Human Protein Atlas (HPA,
https://www.proteinatlas.org) database.

Survival analysis

The NSCLC patients were respectively separated into
high expression group and low expression group accord-
ing to MMP1 expression levels, Kaplan-Meier plotter
(KM plotter, https://www.kmplot.com) was used to esti-
mate the effect of MMP1 on the survival of patients
[29]. The dataset GSE50081 is composed of 127 lung
adenocarcinoma patients, and GSE31210 consists of 226
lung adenocarcinoma patients. And the method exclud-
ing biased arrays was adopted to control array quality. In
the GEPIA2 online database (http://gepia2.cancer-pku.
cn/), the survival analysis was performed based on 144
lung adenocarcinoma (LUAD) patients’ data of a multi-
gene signature (MMP1 and COPS5).

Analyses of MMP1 interactions

Functional network predictive analysis of MMP1 was
performed using the GeneMANIA (https://www.gene-
mania.org/), which is an online gene functional analysis
software used to generate hypotheses of gene function,
analyze gene lists, and prioritizes genes for functional as-
says [30]. After entering MMP1 into the search bar and
selecting humans from optional organisms, the results
show 20 genes closely related to MMP1. At the same
time, the R2 tool was used to analyze the correlation of
proteins interacting with MMPI1. In addition, the bio-
logical processes of MMP1, erlotinib, and drug resist-
ance (neoplasm) were further annotated via consulting
the Coremine Medical online Database (https://www.
coremine.com/medical/).

Identification of transcription factors targeting MMP1
FunRich (https://www.funrich.org) is a stand-alone soft-
ware tool used mainly for interaction network analysis of
genes and proteins [31]. In this study, we predicted and
analyzed the transcription factors targeting MMP-1 by
using FunRich.
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Statistical analysis

The GSE80344 data set was processed using the statis-
tical method Benjamini & Hochberg (false discovery
rate, FDR) in GEO2R, and the differential genes were
screened using the SAM method. The two groups were
compared by the two-tailed Student’s T-test. The differ-
ence was considered statistically significant at P < 0.05.
GO enrichment analysis and KEGG signaling pathway
analysis were performed using statistical tools provided
by the DAVID database, adopting the Bonfeerrni, Benja-
mini false discovery rate, Bootstrap, and Fisher’s exact
test. All the statistical analyses were conducted with the
R language and SPSS 22.0 software.

Results

Identification and functional characterization of
Upregulated DEGs in Erlotinib resistant NSCLC cells
Erlotinib, an epidermal growth factor receptor (EGEFR)
tyrosine kinase inhibitor, is an oral targeted anticancer
drug for non-small cell lung cancer (NSCLC) treatment,
and showing a significant improvement of survival in
NSCLC [32]. However, erlotinib-acquired resistance is a
tough obstacle to effectively treating NSCLC patients
with EGFR mutant characteristics [33—35]. The mechan-
ism underlying erlotinib resistance in NSCLC has not
been fully investigated. In this study, we first explored
the potential genes conferring erlotinib resistance in the
NSCLC erlotinib resistance and sensitive microarray
(GSE80344). 308 DEGs in this microarray were identi-
fied (P<0.01 and [logoFC| =2 as the threshold cutoff)
and a volcano map was shown in Fig. 1la. Among these
DEGs, there were 73 significantly upregulated and 235
markedly downregulated (Fig. 1b; Table S1). To
characterize the potential role of these significantly up-
regulated DEGs, these DEGs were first performed for a
GO enrichment analysis, results were divided into three
ontologies, including biological process (BP), cellular
component (CC) and molecular function (MF), and the
top five GO enrichment terms of each ontology were
shown in Fig. 1¢; Table S2. In the BP category, upregu-
lated DEGs were enriched in branching involved in saliv-
ary gland morphogenesis, retinal metabolic process,
inflammatory responses, cytokine-mediated signaling
pathway, and immune response. In the CC category, the
upregulated genes were mainly enriched in the extracel-
lular region, collagen type IV trimer, collagen trimer,
and plasma membrane. In the MF category, the DEGs
were enriched in chromatin binding, indanol dehydro-
genase activity, ketosteroid monooxygenase activity,
trans-1,2-dihydrobenzene-1,2-diol dehydrogenase activ-
ity, and phenanthrene 9,10-monooxygenase activity.
Moreover, KEGG pathway enrichment analyses were
further employed to investigate the functional annota-
tions of these upregulated DEGs. Results showed that
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these upregulated DEGs were primarily involved in the
PI3K-Akt signaling pathway, pertussis, pathways in can-
cer, steroid hormone biosynthesis, and small cell lung
cancer (Fig. 1d; Table S3).

MMP1 was identified as the gene conferring Erlotinib
resistance in NSCLC

Whether these upregulated DEGs in the erlotinib-
resistant GSE80344 dataset are also highly expressed in
other NSCLC datasets, we further analyzed a dataset
GSE19188 (1 = 156, 3 datasets were abandoned) consist-
ing of 91 human NSCLC and 62 adjacent normal tissues.
A total of 369 DEGs in dataset GSE19188 were identi-
fied by R language analysis with P<0.01 and threshold
cutoff |log,FC| > 2, a volcano map was shown in Fig. 2a.
Among these DEGs, 122 genes were dramatically upreg-
ulated and 247 genes were downregulated (Fig. 2b; Table
S4). These upregulated DEGs were further functionally
annotated by GO analyses, and the top five GO enrich-
ment terms of BP, CC, and MF categories were shown
in Fig. 2c; Table S5. In the BP category, upregulated

DEGs were enriched in microtubule-based movement,
mitotic cytokinesis, chromosome segregation, mitotic
spindle assembly, and positive regulation of ubiquitin-
protein ligase activity. In the CC category, the upregu-
lated genes were mainly enriched in kinesin complex,
midbody, spindle pole, condensed chromosome kineto-
chore, and spindle microtubule. In the MF category,
the upregulated DEGs were enriched in microtubule
motor activity, ATP binding, ATP-dependent micro-
tubule motor activity, ATPase activity, and ubiquitin-
conjugating enzyme activity. In addition, KEGG analysis
results showed that these upregulated DEGs were mainly
involved in signaling pathways of the «cell cycle,
progesterone-mediated  oocyte  maturation, ECM-
receptor interaction, microRNAs in cancer and rheuma-
toid arthritis (Fig. 2d; Table S6). Expanded view of the
expression of top 50 upregulated and downregulated
genes of NSCLC tissues was shown in heatmap (Fig. 2e).

We then combined the upregulated genes of
GSE19188 and GSE80344 datasets to narrow down the
potential genes conferring erlotinib resistance in NSCLC
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and found that the expression of MMP1 was markedly in- in NSCLC tissues was significantly higher than that in
creased in both datasets (Fig. 3a). To further validate the normal tissues, via the datasets GSE7670 (P =8.01E-10,
expression of MMP1 between erlotinib sensitive and re-  Fold Change = 21.925) and GSE10072 (P =1.12E-15, Fold
sistant NSCLC cells, 3 datasets were analyzed by GEO2R  Change = 7.277) in Oncomine (Fig. 3c and d). In addition,
(|logy (Fold change) | >1 and P<0.01) (Fig. 3b). The re- to further verify the expression level of MMP1, we utilized
sults revealed that MMP1 was significantly upregulated in  another online analysis tool, GEPIA2. And the results re-
the erlotinib resistance dataset GSE38121, GSE69181 and  vealed that MMP1 was significantly upregulated in lung
GSE80344. And we verified that the expression of MMP1  adenocarcinoma (LUAD) and lung squamous cell
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carcinoma (LUSC) compared with normal lung tissues
(|logy (Fold change) |>2 and P<0.01) (Fig. 3e). In
addition, survival analysis by Kaplan-Meier plotter indi-
cated that patients with high expression of MMP1 were
associated with poor overall survival (GSE50081, HR =
1.87 (1.06-3.31), log-rank P = 0.028; GSE31210, HR = 2.42
(1.19-4.95), log-rank P = 0.012) (Fig. 3f and g).

Validation of MMP1 hub genes related to erlotinib
resistance in NSCLC

To determine how MMP1 plays functions in the erloti-
nib resistance of NSCLC, the GeneMANIA analysis

revealed that MMP1 is closely related to 20 proteins/
genes (Fig. 4a). Among these genes, four genes play cru-
cial regulatory roles in drug resistance in a variety of
cancer types. Among these four genes, Integrin subunit
alpha 2 (ITGA2), Basigin (BSG), and Thyroid hormone
receptor interactor 6 (TRIP6) were downregulated in the
erlotinib resistance dataset GSE80344, while COP9 sig-
nalosome subunit 5 (COPS5) was upregulated in this
dataset (Fig. 4b). Considering that gene expression was
not always consistent with its protein level, we further
analyzed the protein level of COPS5 in NSCLC tissues
from the Human Protein Atlas (HPA) database. The
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immunohistochemical results indicated that the expres-
sion level of COPS5 exhibited significant upregulation in
NSCLC tissues (Fig. 4c). Meanwhile analysis of the
Tumor Lung (NSCLC)-Muley-100 dataset by R2 online
tool revealed that MMP1 expression was positively cor-
related with COPS5 (Fig. 4d; R=0.236, P=0.02). And
we further performed the survival analysis by GEPIA2
and found that patients with simultaneous high expres-
sion of MMP1 and COPS5 were associated with poor
overall survival (HR =1.7, log-rank P =0.047) (Fig. 4e).
Thus, COPS5 might be involved in MMP1-mediated er-
lotinib resistance.

Validation of the Erlotinib resistance function of MMP1

To further investigate the mechanism of erlotinib resist-
ance in NSCLC, the transcription factors targeting
MMP1 were explored by FunRich analysis, HOXAY,
PBX1, JUND, JUNB, and JUN were identified to be the
top five transcription factors which targeting MMP1
(Fig. 5a). Among these transcription factors, HOXA9
[13, 36] and PBX1 [37, 38] have been reported to func-
tion as drivers in drug resistance of multiple cancer
types. Finally, the biological process of MMP1 was anno-
tated using the Coremine Medical Database. As shown
in Fig. 5b, 10 biological processes were closely associated
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with drug resistance, which MMP1 may affect drug re-
sistance by regulating cell growth, apoptosis, protein
phosphorylation, and angiogenesis. Consequently, these
results indicated that MMP1 may confer the erlotinib re-
sistance in NSCLC through a variety of mechanisms.

Discussion

Conventional chemotherapy and molecular-targeted
therapy are currently two important strategies for NSCL
C treatment [9]. Whereas, the clinical prognosis of both
strategies is poor due to the subsequently acquired drug
resistance, whose mechanisms have been partly reported,
such as the drug target genetic mutations [39, 40]. The
significance of EGFR has been identified in NSCLC, and
consequently promotes the application of EGFR inhibi-
tors [41]. Erlotinib is the first generation of EGFR inhibi-
tors, and it has been commonly used in locally advanced
or metastatic NSCLC after chemotherapy failure [10].
Although the efficacy of erlotinib in NSCLC has been
confirmed, long course application of erlotinib inevitably
leads to drug resistance and tumor relapse [42, 43]. At
present, gene identifications conferring drug resistance
through high-throughput screening methods and the de-
sign of drugs aiming at these genes may be a promising
appeal in cancer treatment [8, 44]. For example, LEEO11,

a CDK 4/6 inhibitor, has a good inhibitory effect on the
resistance caused by PI3K mutation in breast cancer
[45]. In the present study, we combined an NSCLC erlo-
tinib resistant microarray (GSE80344) with an NSCLC
tissue Dataset (GSE19188), and initially identified
MMP1 as a candidate gene conferring erlotinib resist-
ance in NSCLC based on the comprehensive bioinfor-
matics analyses.

Matrix metalloproteinases (MMPs) family is a zinc-
dependent peptidase, which is responsible for the deg-
radation of the extracellular matrix (ECM) [46]. More-
over, MMPs play a key role in tissue remodeling and
regulation in various diseases containing arthritis, cir-
rhosis, and cancers [47, 48]. Among them, MMP1 has
been proved to be highly expressed in various kinds of
cancers, mainly acting to degrade type I and type III col-
lagen in the extracellular environment [49]. It has been
reported that MMP1 enhanced tumor cell invasiveness
by increasing vascular endothelial growth factor (VEGEF)
and bone morphogenetic protein 2/4 [50-52]. In
addition, Slug enhanced MMP1 transcription by directly
binding to the promoter region of breast cancer cells,
resulting in multiple drug resistance [53]. Additionally, it
has been reported that MMP1 can be applied as a candi-
date therapeutic target and biomarker for drug response
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[17, 54, 55]. In the present study, we revealed that
MMP1 was overexpressed in NSCLC tissues and
erlotinib-resistant NSCLC cells, and it negatively associ-
ated with overall survival in NSCLC patients. Through
using protein/gene interactions (GeneMANIA), bio-
logical process annotation (Coremine) and transcription
factor analysis (FunRich), we further verified that MMP1
may confer the erlotinib resistance in NSCLC through
various mechanisms. GeneMANIA results indicated that
MMP1 was closely associated with 20 genes, including
BSG, TRIP6, ITGA2, F2R, MMP3, COPS5, etc. And four
genes (ITGA2, BSG, TRIP6, and COPS5) have been
found to regulate drug resistance in different cancer
models [56—59]. Especially, COPS5 was significantly up-
regulated in the erlotinib resistance dataset GSE80344
and NSCLC tissues. And the survival analysis indicated
that patients with simultaneous high expression of
MMP1 and COPS5 were associated with poor overall
survival. It has been reported that COPS5 plays a crucial
role in tamoxifen resistance in oestrogen receptor a
(ERa) positive breast cancer patients, through regulating
NCoR ubiquitination-proteasomal degradation. Other
studies revealed that the expression of MMP1 was posi-
tively correlated with COPS5 [60]. These results demon-
strated that COPS5 might be involved in MMP1-
mediated erlotinib resistance. Several transcription fac-
tors in the epigenetic regulation of MMP1 were also
screened in the present study, and two major transcrip-
tion factors, HOXA9 and PBX1, were identified. Previ-
ous studies have also reported that HOXA9 and PBX1
were involved in drug resistance regulation [36, 37], sug-
gesting that HOXA9 and PBX1 may play an important
role in erlotinib resistance through regulating the tran-
scription of MMP1. Taken together, we validated that
MMP1 is a potential erlotinib resistance gene in NSCLC
and could be a prognostic biomarker for erlotinib
treatment.

Conclusion

In conclusion, we demonstrated that MMP1 may confer
the erlotinib resistance in NSCLC through multiple
mechanisms based on comprehensive bioinformatics
analyses. Our study provides a potential target for rever-
sion and prognosis of erlotinib resistance in NSCLC, and
further studies will clarify the underlying molecular
mechanism by which MMP1 regulates erlotinib
resistance.
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