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Abstract

Background: The aim of this study is to identify the potential pathogenic and metastasis-related differentially
expressed genes (DEGs) in osteosarcoma through bioinformatic analysis of Gene Expression Omnibus (GEO)
database.

Results: Gene expression profiles of GSE14359, GSE16088, and GSE33383, in total 112 osteosarcoma tissue samples
and 7 osteoblasts, were analyzed. Seventy-four normal-primary DEGs (NPDEGs) and 764 primary-metastatic DEGs
(PMDEGs) were screened. VAMP8, A2M, HLA-DRA, SPARCL1, HLA-DQA1, APOC1 and AQP1 were identified
continuously upregulating during the oncogenesis and metastasis of osteosarcoma. The enriched functions and
pathways of NPDEGs include procession and presentation of antigens, activation of MHC class II receptors and
phagocytosis. The enriched functions and pathways of PMDEGs include mitotic nuclear division, cell adhesion
molecules (CAMs) and focal adhesion. With protein-protein interaction (PPI) network analyzed by Molecular
Complex Detection (MCODE) plug-in of Cytoscape software, one hub NPDEG (HLA-DRA) and 7 hub PMDEGs (CDK1,
CDK20, CCNB1, MTIF2, MRPS7, VEGFA and EGF) were eventually selected, and the most significant pathways in
NPDEGs module and PMDEGs module were enriched in the procession and presentation of exogenous peptide
antigen via MHC class II and the nuclear division, respectively.

Conclusions: By integrated bioinformatic analysis, numerous DEGs related to osteosarcoma were screened, and the
hub DEGs identified in this study are possibly part of the potential biomarkers for osteosarcoma. However, further
experimental studies are still necessary to elucidate the biological function and mechanism of these genes.
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Introduction
Osteosarcoma is the most prevalent primary bone malig-
nancy and the 8th most frequent type of malignancy that
disproportionally affects children and young adults [1].
In recent decades, the improvement in osteosarcoma’s
treatment (surgery and chemotherapy) has largely
increased the long-term survival rate (approximately 60–
70%) of children and young adult patients with

osteosarcoma without distal metastasis [2, 3]. However,
the etiology remains unknown, and this discourages the
prevention and early diagnosis of osteosarcoma. There-
fore, it is extremely necessary to explore the mechanisms
behind the occurrence and progression of osteosarcoma.
In recent years, the development in molecular biology

has provided some new insights into the potential
diagnostic and therapeutic biomarkers for osteosarcoma
[4]. Genome-wide molecular profiling, which reveals
molecular changes in tumorigenesis and progression, has
been proved to be an efficient approach to identify key
genes [5, 6]. However, it requires considerable time and
fund to obtain clinical biological samples and subse-
quently conduct high-throughput genetic detection and
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analysis. Cumulative studies in the past have shown that
re-analyzing gene datasets of previous experiments from
online databases is a feasible way to find out biologically
and clinically relevant biomarkers (genes) [7–11], and
that some of those biomarkers (genes) have even been
found to play important roles in osteosarcoma. For
instance, by conducting bioinformatics analysis on three
datasets deposited in GEO database (GSE36001,
GSE19276 and GSE16088), Pan Liu et al. [10] revealed
that tumor protein p53 (TP53), mitogen-activated
protein kinase 1 (MAPK1), estrogen receptor 1 (ESR1),
notch homolog protein 3 (NOTCH3) and caspase 1
(CASP1) might potentially be important osteosarcoma-
associated genes. Among them, mutant TP53 was subse-
quently reported to be associated with poor survival of
osteosarcoma patients, because it can increase the cell
proliferation, migration, and chemoresistance in osteo-
sarcoma [12]; MAPK1 has been confirmed to be highly
expressed in osteosarcoma cells, and can be down-
regulated by osteosarcoma related tumor suppressive
miR-511 [13]. Based on this, regulation of MAPK1
receptor expression may be a novel approach to treat
osteosarcoma. Not long ago, Notch3 overexpression also
was confirmed to be associated with metastasis and poor
prognosis in osteosarcoma patients [14]. All those
examples suggest that bioinformatics analysis is a
feasible approach to identify specific genes that may
provide valuable clues for investigating the pathogenesis
of osteosarcoma.
The current study aims to investigate the crucial

genes and key pathways potentially involved in osteo-
sarcoma tumorigenesis and development. To achieve
this, we integrated bioinformatics analysis based on
Gene Expression Omnibus (GEO) datasets. The data
obtained indicate that some genes might continue to
participate in the occurrence and metastasis of
osteosarcoma.

Materials and methods
Osteosarcoma datasets
The following criteria were applied to screen out ap-
propriate gene expression data: i) primary or metastatic
osteosarcoma tissues were included as tumor samples;
ii) normal human bone samples or human osteoblasts
were included as normal counterparts; iii) more than
1000 DEGs with FDR (i.e. adjusted p-value) < 0.05 and
|log2fold-change (FC)| > 1 as the cut-off criteria [7–11];
and iv) more than 10 overlapping DEGs with other
datasets. Three datasets were finally included. Dataset
GSE14395 [15] contains 5 frozen osteosarcomas (from
5 patients, 27.2 ± 24.0 years, 2 females and 3 males) and
4 osteosarcoma lung metastasis samples (from 4 pa-
tients, 35.8 ± 9.0 years, 3 females and 1 males) and 1
fresh primary osteoblast cell HOBc (two duplicates for

each sample). Dataset GSE16088 [16] contains 15 fro-
zen osteosarcomas (clinical data was not available) and
3 fresh primary osteoblast cells (U2, HOS and MG63).
Dataset GSE33383 [17] contains 82 osteosarcomas
(from 84 patients, 19.0 ± 11.7 years, 29 females, 54
males and 1 gender unknown) and 3 fresh primary
osteoblast cells (220-OB, 240-OB and Kaat-OB).
The three gene expression profiles above were

downloaded from the Gene Expression Omnibus (GEO)
database (https://www.ncbi.nlm.nih.gov/geo/) [18] for
identification of DEGs. Detailed information of all
datasets included is listed in Table 1.

Data preprocessing
The analysis of raw probe-level data (.CEL files) was
performed using the robust multiarray average
algorithm (RMA) in the Affy package of R [19]. After
background correction and quantile normalization,
the expression values were obtained. The averages of
the probe set of values were calculated as the
expression values for the same gene with multiple
probe sets [20].

Identification of DEGs
Identification of DEGs was performed using the LIMMA
package of R [21]. The adjusted P-values (adj P-value)
were adopted to avoid the occurrence of false-positive
results. Using the Benjamini-Hochberg method [22] via
the multtest package in R, the FDR (that is, adjusted p-
value) < 0.05 and |log2fold-change (FC)| > 1 were used
as the cut-off criteria, as previously reported [7–11].
Online tool EHBIO ImageGP (http://www.ehbio.com/
ImageGP) operated by EHBIO Gene Technology
(Beijing) Co., Ltd. (Beijing, China) was applied to gener-
ate volcano plot and Venn diagram, respectively, for the
visualization of the identified DEGs.

Functional enrichment analysis
GO (Gene Ontology) function and KEGG (Kyoto
Encyclopedia of Genes and Genomes) pathway enrich-
ment analyses of the DEGs were performed using the
clusterProfiler package of R [8]. The GO and KEGG
terms with FDR < 0.05 were regarded as significant
functions and pathways.

Protein-protein interaction network construction and
module analysis
The Search Tool for the Retrieval of Interacting Genes
(STRING; http://string.embl.de/) is a database of
protein-protein interactions known and predicted
(PPIs) [23]. Based on the STRING online tool, PPIs of
the DEGs were constructed with a confidence score ≥
0.7. Subsequently, the PPI network was visualized by
means of Cytoscape software (version 3.7.2).
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Furthermore, Molecular Complex Detection (MCODE)
[24] plug-in in Cytoscape software was applied to
explore the significant modules in PPI network. The
advanced options set as degree cutoff = 2, K-Core = 2,
and Node Score Cutoff = 0.2. Given that it’s hard to
conduct enrichment analysis based on small gene sets
with the clusterProfiler package of R, instead con-
ducted was the GO function enrichment analysis of
DEGs in each module using ClueGo [25] and CluePe-
dia [26] plug-ins of Cytoscape software. The GO terms
with FDR < 0.05 (Benjamini-Hochberg method) were
regarded as significant functions.

Results
Identification of DEGs between normal osteoblasts and
osteosarcoma samples
According to the screening criteria, this study enrolled
three datasets (Table 1) to identify genes differentially
expressed between normal osteoblasts and osteosarcoma
tissue samples. There were 777 normal-primary DEGs
(NPDEGs; 489 up-regulated and 288 down-regulated) in
GSE14359, 1943 NPDEGs (1010 up-regulated and 933
down-regulated) in GSE16088, and 771 NPDEGs (350
up-regulated and 421 down-regulated) in GSE33383
(Fig. 1a–c). Further analysis of these NPDEGs with Venn

Table 1 Characteristics of datasets in this study

Dataset Platform Sample Country

Normal Primary tumor Metastatic tumor

GSE14359 [15] Affymetrix HG U133A 1 osteoblasts (two duplication) 10 tissue samples 4 lung samples Germany

GSE16088 [16] Affymetrix HG U133A 3 osteoblasts (U2, HOS and MG63) 14 tissue samples USA

GSE33383 [17] Illumina human-6 v2.0 3 osteoblasts (220-OB, 240-OB and Kaat-OB) 84 tissue samples Norway

Fig. 1 Identification of differentially expressed genes (DEG) between osteosarcoma cell lines and osteoblasts. a-c Volcano plots for expression of
DEGs in dataset GSE14359 (a), GES16088 (b) and GSE33383 (c). Red dots represent upregulated DEGs, grey dots represent downregulated DEGs,
and green dots represent DEGs with no differences. d-e The Venn diagrams of the overlapping DEGs among the three datasets
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diagram revealed that there were 61 up-regulated over-
lapping NPDEGs, and 13 down-regulated overlapping
NPDEGs among all three datasets (Fig. 1d-e, Supple-
mentary Table 1).

Functional enrichment analysis of DEGs between Normal
tissue and osteosarcoma samples
To further investigate the biological functions of the 74
NPDEGs, GO and pathway analysis were performed
using the clusterProfiler package of R. GO analysis (Sup-
plementary Table S2) showed that the NPDEGs between
osteosarcoma and normal tissue samples were clustered
in 82 significant biological process (BP) categories. As
shown in Fig. 2a (top ten BP categories), most were clus-
tered in antigen procession and presentation. NPDEGs
were clustered in 43 significant cellular component (CC)
categories. As shown in Fig. 2b (top ten CC categories),
the most significant CC category was MHC class II pro-
tein complex. DEGs were clustered in 4 significant

molecular function (MF) categories. As shown in Fig. 2c,
the most significant MF category was MHC class II re-
ceptor activity. KEGG analysis identified 28 significant
pathways, such as phagosome and antigen procession
and presentation (Fig. 2b, Supplementary Table S2).

Identification of DEGs between primary and metastatic
osteosarcoma samples
Based on the screening criteria, only GSE14359 dataset
was selected for identifying genes differentially expressed
between primary and metastatic osteosarcoma samples.
There were 764 primary-metastasis DEGs (PMDEGs,
309 up-regulated and 455 down-regulated) in GSE14359
(Fig. 3a and Supplementary Table S3). Interestingly,
seven overlapping up-regulated DEGs (VAMP8, A2M,
HLA-DRA, SPARCL1, HLA-DQA1, APOC1 and AQP1)
were identified between the NPDEGs and PMDEGs
(Fig. 3b, Table 2), whereas there was none overlapping
down-regulated DEG (Fig. 3c). This suggests that these

Fig. 2 GO classification and KEGG pathway analysis of 74 normal-primary related DEGs. a-c GO enrichment analysis of NPDEGs in the biological
process (a), cellular component (b), and molecular function (c) categories. d KEGG pathway analysis of NPDEGs. The X-axis represents the
enrichment levels. The larger value of Rich factor represents the higher level of enrichment. The color of the dot stands for the different P-value
and the size of the dot reflects the number of target genes enriched in the corresponding pathway. GO, Gene Ontology; KEGG, Kyoto
Encyclopedia of Genes and Genomes
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seven genes may act as oncogenes and continue to
participate in the development and metastasis of
osteosarcoma.

Functional enrichment analysis of DEGs between primary
and metastatic osteosarcoma samples
GO analysis (Supplementary Table S4) showed the 764
PMDEGs were clustered in 162 significant BP categories.
As shown in Fig. 4a (top ten BP categories), the most
significant BP category was mitotic nuclear division.

PMDEGs were clustered in 57 significant cellular CC
categories. As shown in Fig. 4b (top ten CC categories),
the most significant CC category was extracellular
matrix (ECM). PMDEGs were clustered in 16 significant
molecular function (MF) categories. As shown in Fig. 4c
(top ten MF categories), the most significant MF
category was alpha-amylase activity. KEGG analysis
identified 25 significant biological pathways, such as cell
adhesion molecules (CAMs) and focal adhesion (Fig. 4d,
Supplementary Table S4).

Fig. 3 Identification of differentially expressed genes (DEG) between primary and metastatic osteosarcoma tissue samples. a Volcano plots for
expression of PMDEGs in GSE14359 dataset. Red dots represent upregulated DEGs, grey dots represent downregulated DEGs, and green dots
represent genes with no differences. b The Venn diagrams of the overlapping DEGs between the upregulating NPEGSs and PMDEGs. c The Venn
diagrams of the overlapping DEGs between the downregulating NPEGSs and PMDEGs

Table 2 DEGs continuous upregulating during the oncogenesis and metastasis of osteosarcoma

Gene
symbol

Full name GO BP ID KEGG pathway

HLA-
DRA

Major
histocompatibility
complex, class II, DR
alpha

GO:0002478, GO:0019884, GO:0019886, GO:0048002, GO:
0002495, GO:0002504, GO:0019882, GO:0060333, GO:0002429,
GO:0071346, GO:0002768, GO:0034341, GO:0050852, GO:
0002503, GO:0050851, GO:0002399, GO:0002501, GO:0002396

hsa04940, hsa05310, hsa05330, hsa05332, hsa05150,
hsa05322, hsa04672, hsa05140, hsa04612, hsa04145,
hsa05320, hsa05416, hsa05323, hsa05152, hsa04640,
hsa05321, hsa04514, hsa04658, hsa04659, hsa05145,
hsa05166, hsa05164, hsa05169

VAMP8 Vesicle Associated
Membrane Protein 8

GO:0002478, GO:0019884, GO:0048002, GO:0019882, GO:
0043312, GO:0002283, GO:0042119, GO:0002446, GO:0002697,
GO:0002696, GO:0050867, GO:0002699, GO:0043304, GO:
0033006, GO:0042590

/

A2M Alpha-2-
Macroglobulin

GO:0002697 hsa04610

SPAR
CL1

SPARC Like 1 / /

HLA-
DQA1

Major
Histocompatibility
Complex, Class II, DQ
Alpha 1

GO:0002478, GO:0019884, GO:0019886, GO:0048002, GO:
0002495, GO:0002504, GO:0019882, GO:0060333, GO:0002429,
GO:0071346, GO:0002768, GO:0034341, GO:0050852, GO:
0050851

hsa04940, hsa05310, hsa05330, hsa05332, hsa05150,
hsa05322, hsa04672, hsa05140, hsa04612, hsa04145,
hsa05320, hsa05416, hsa05323, hsa05152, hsa04640,
hsa05321, hsa04514, hsa04658, hsa04659, hsa05145,
hsa05166, hsa05164, hsa05169

APOC1 Apolipoprotein C1 GO:0043062, GO:0051346, GO:0060627, GO:0030100 /

AQP1 Aquaporin 1 GO:0015669, GO:0015701, GO:0046677, GO:0030185, GO:
0006979, GO:0015670, GO:0048545, GO:0042476, GO:0042542,
GO:0097237

hsa04964

/: no significant related GO BP or KEGG pathway term
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PPI (protein-protein interaction) network and module
analysis
PPI Network was subsequently analyzed and proteins
were selected based on a combined score ≥ 0.7 in STRI
NG analysis. There were 49 nodes and 91 interactions
among the 74 NPDEGs (Fig. 5a, Supplementary Table
S5). In addition, one significant module with a score = 5
was screened out via MCODE, and HLA-DRA was the
hub gene with the highest degree of connectivity
(Table 3). GO analysis with ClueGO showed that the
most significant BP category in this module was
enriched in the antigen processing and presentation of
exogenous peptide antigen via MHC class II (Fig. 5b,
Supplementary Table S6).
There were 521 nodes and 2415 interactions among

the 764 PMDEGs, and three significant modules with a
score ≥ 10 were screened out via MCODE (Fig. 6a,
Supplementary Table S7). Module 1 (score = 32.5)
included 36 genes, with CDK1, CDK20 and CCNB1 as
hub nodes (Table 3). GO analysis with ClueGO showed

that the most significant BP category in this module was
enriched in the nuclear division (Fig. 6b, Supplementary
Table S8). Module 2 (score = 13.8) included 14 genes,
with MTIF2 and MRPS7 as hub nodes (Table 3). The
most significant BP category was enriched in the
mitochondrial translation (Fig. 6c, Supplementary Table
S8). Module 3 (score = 12) included 12 genes, with
VEGFA and EG as hub nodes (Table 3). The most
significant BP category was enriched in the platelet
degranulation (Fig. 6d, Supplementary Table S8).

Discussion
This study has gained some insights into gene expres-
sion modules in osteosarcoma at a genome-wide scale
through analyzing three osteosarcoma datasets. A panel
of 74 NPDEGs was identified as associated with osteo-
sarcoma tumorigenesis; and 364 PMDEGs were identi-
fied as associated with the osteosarcoma metastasis. In
addition, it was noticed that seven genes (VAMP8, A2M,
HLA-DRA, SPARCL1, HLA-DQA1, APOC1 and AQP1)

Fig. 4 GO classification and KEGG pathway analysis of 764 PMDEGs. a-c GO enrichment analysis of PMDEGs in the biological process (a), cellular
component (b), and molecular function (c) categories. d KEGG pathway analysis of PMDEGs. The X-axis represents the enrichment levels. The
larger value of Rich factor represents the higher level of enrichment. The color of the dot stands for the different P-value and the size of the dot
reflects the number of target genes enriched in the corresponding pathway. GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes
and Genomes
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were continuous upregulating during the oncogenesis
and metastasis of osteosarcoma, which suggested that
these genes may act as oncogenes and be consistently
involved in the pathophysiological process of osteosar-
coma. This study further obtained major histocompati-
bility complex, class II, DR alpha (HLA-DRA) as the hub
NPDEGs from the top module with MCODE score = 5,
and 7 hub PMDEGs (CDK1, CDK20, CCNB1, MTIF2,
MRPS7, VEGFA and EGF) from three top modules with
MCODE score > 10. These may be pivotal genes
involved in the pathophysiological process of
osteosarcoma.
Among these 8 hub genes, HLA-DRA, which is corre-

lated with the procession and presentation of peptide
antigen via MHC class II, continued to be up-regulated
during the osteosarcoma oncogenesis and metastasis.
Apparently, HLA-DRA may have the “driving” function
in osteosarcoma. It has been proved as a predictor for
metastasis of osteosarcoma [27]. Although until now
there is no report about the function and mechanism of
HLA-DRA in osteosarcoma, previous studies have
shown that HLA-DRA is involved in the evasion of the
virus from the immune system [28] and Alzheimer’s
disease [29]. Pan Y et al. also listed HLA-DRA as one of
the crucial genes in the regulatory network of osteosar-
coma they constructed from the dataset GSE28424 [30].
These data indicate that the function of HLA-DRA in
osteosarcoma is worthy of attention, especially on the
topic of whether it plays a pathophysiological role in
osteosarcoma through the process of antigen procession

and presentation of peptide antigen via MHC class II.
The function enrichment analysis results revealed that
HLA class II alleles may be a main impactive factor in
osteosarcoma. HLA-DQA1 is also an HLA class II
variant that has been reported to be associated with the
osteosarcoma risks [31]. Profound understanding of
those genes’ immunologic contribution to the etiology of
osteosarcoma may be helpful for selecting rational
therapeutic targets.
SPARCL1 is an ECM remodeling gene. It modulates

extracellular calcium by binding to collagen I [32, 33],
which may reveal its potential role in osteosarcoma cell
metastasis. Although Zhao SJ et al. [34] reported that
SPARCL1 was downregulated in OS by epigenetic
methylation of promoter DNA, and that SPARCL1 could
suppress osteosarcoma metastasis and recruit macro-
phages by activation of canonical WNT/β-catenin signal-
ing through stabilization of the WNT-receptor complex,
this study, on the contrary, noticed that SPARCL1
continued to be upregulated during osteosarcoma devel-
opment and metastasis. This contradiction is worthy of
further confirmation by collecting clinical samples and
expression analysis. Aquaporin 1 (AQP1) is a water-
selective transporting protein in cell membranes, and it
has been found to be overexpressed in various tumors
and promote metastasis and neo-angiogenesis. AQP1
can promote osteosarcoma cell proliferation, adhesion,
invasion and tumorigenesis by targeting TGF-β signaling
pathway and focal adhesion genes [35], and recruit
human BM-MSCs into the osteosarcoma

Fig. 5 Protein-protein interaction (PPI) network construction and GO enrichment analysis of the 5 gene module. a PPI network constructed with
the 74 NPDEGs. All cycle nodes stand for upregulated genes, and all square nodes stand for downregulated genes. Genes in module 1 are in
yellow. The seed node lives at the center of module 1. b The biological process categories associated with genes in module 1 through GO
enrichment analysis (FDR < 0.05). GO, Gene Ontology
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Table 3 Hub genes with high degree of connectivity in each module

Category MCODE
module

Gene
symbol

Degree Type Full name Go BP ID KEGG pathways

NPDEG Module
1

HLA-
DRA

7 Up Major
histocompatibility
complex, class II,
DR alpha

GO:0002478, GO:0019884, GO:0019886,
GO:0048002, GO:0002495, GO:0002504,
GO:0019882, GO:0060333, GO:0002429,
GO:0071346, GO:0002768, GO:0034341,
GO:0050852, GO:0002503, GO:0050851,
GO:0002399, GO:0002501, GO:0002396,

hsa04940, hsa05310, hsa05330,
hsa05332, hsa05150, hsa05322,
hsa04672, hsa05140, hsa04612,
hsa04145, hsa05320, hsa05416,
hsa05323, hsa05152, hsa04640,
hsa05321, hsa04514, hsa04658,
hsa04659, hsa05145, hsa05166,
hsa05164, hsa05169

PMDEG Module
1

CDK1 74 Up Cyclin dependent
kinase 1

GO:0010038, GO:1901988, GO:0045930,
GO:1901991, GO:0010948, GO:0007093,
GO:0007568, GO:0046677, GO:0031145,
GO:0000075, GO:0042692, GO:0009123,
GO:0009141, GO:0071103, GO:0045927,

hsa04110

PMDEG Module
1

CDK20 62 Up Cyclin dependent
kinase 20

/ /

PMDEG Module
1

CCNB1 61 Up Cyclin B1 GO:0140014, GO:0000819, GO:0000070,
GO:0010038, GO:0000280, GO:0007059,
GO:0048285, GO:0045839, GO:0098813,
GO:0007088, GO:0051784, GO:0051783,
GO:0001701, GO:0010965, GO:2000816,
GO:0051983, GO:1905819, GO:0051306,
GO:0030071, GO:0033048, GO:1905818,
GO:0007094, GO:0031577, GO:0071173,
GO:0071174, GO:0033044, GO:1902099,
GO:0071241, GO:0033046, GO:0007091,
GO:0051985, GO:1901988, GO:0045841,
GO:0051304, GO:0044784, GO:0071248,
GO:1902100, GO:0033047, GO:0033045,
GO:0045930, GO:0070482, GO:1901991,
GO:0010948, GO:0007093, GO:0036293,
GO:0001666, GO:0031145, GO:0051656,
GO:0000075, GO:0071453, GO:0042692,
GO:0009123, GO:0009141, GO:0048565,
GO:0010639, GO:0071103, GO:0045927

hsa04110

PMDEG Module
2

MTIF2 25 Up Mitochondrial
translational
initiation factor 2

GO:0032543, GO:0140053 /

PMDEG Module
2

MRPS7 25 Down Mitochondrial
ribosomal protein
S7

GO:0032543, GO:0140053, GO:0070125,
GO:0006414, GO:0022613, GO:0070126

/

PMDEG Module
3

VEGFA 38 Down Vascular
endothelial
growth factor A

GO:0043129, GO:0052547, GO:0048875,
GO:0052548, GO:0050900, GO:0010466,
GO:0010951, GO:0032103, GO:0010810,
GO:0045785, GO:0048732, GO:0001701,
GO:0010811, GO:0060249, GO:0033044,
GO:0031589, GO:0045807, GO:0097529,
GO:0045861, GO:0030595, GO:0070482,
GO:0048871, GO:0051346, GO:0036293,
GO:0001666, GO:0002576, GO:0001894,
GO:0002685, GO:0002688, GO:0060627,
GO:0071453, GO:0001954, GO:0042692,
GO:0001952, GO:0050920, GO:0030100,
GO:0060326, GO:0050678, GO:0002687,
GO:0061138, GO:0016049, GO:0045927

hsa05323, hsa04510, hsa04933

PMDEG Module
3

EGF 34 Up Epidermal growth
factor

GO:0140014, GO:0043129, GO:0052547,
GO:0043062, GO:0030198, GO:0000280,
GO:0048875, GO:0052548, GO:0048285,
GO:0007088, GO:0050900, GO:0010466,
GO:0010951, GO:0032103, GO:0010810,
GO:0045785, GO:0048732, GO:0051783,
GO:0001701, GO:0010811, GO:0060249,
GO:0033044, GO:0031589, GO:0045807,
GO:0097529, GO:0045861, GO:0030595,

hsa04668, hsa05323, hsa04510,
hsa04933
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microenvironment [36]. These reports strongly support
our current study’s analysis result and confirm that
AQP1 is an oncogene and metastasis promoter in osteo-
sarcoma. Although seldom previous studies have re-
vealed the expression and role of VAMP8, APOC1 and
A2M in osteosarcoma, exploration in some other tumors
has well proved that these genes are important tumor-
related regulatory factors [37–39]. However, due to the
specificity of osteosarcoma in pathogenesis and signaling
pathways involved, additional work is needed to extend
the current observation and to clarify the potential
causal mechanisms underlying the deregulation of these
genes in osteosarcoma.
With regards to these hub genes identified, cyclin-

dependent kinase 1 (CDK1) and cyclin-dependent kinase
20 (CDK20) belong to serine/threonine protein kinase
family. Cyclin B1 (CCNB1) is a pivotal protein respon-
sible for the control of the cell cycle at the G2/M
(mitosis) transition. All the three genes are involved in
the cell cycle and growth. Reduction of CDK1 activities
is crucial for the survival of osteosarcoma cells [40].
Overexpression of CCNB1 can facilitate the growth rate
of osteosarcoma cells and increase their sensitivity to
paclitaxel [41]. Several drugs were reported to inhibit
cell proliferation or induce cell cycle arrest and apop-
tosis in human osteosarcoma by downregulating CCNB1
and CDK1 [42–45]. Both mitochondrial translational ini-
tiation factor 2 (MTIF2) and mitochondrial ribosomal
protein S7 (MRPS7) are proteins implicated in mito-
chondrial translation. In this study, we have identified
MRPS7 and MTIF2 as hub genes involved in the metas-
tasis of osteosarcoma. Mitochondrial translation pathway
plays essential roles in programmed cell death. The
implication of mitochondria-mediated intrinsic pathway
in human osteosarcoma has been observed [46], and
inhibition of mitochondrial translation has been reported
to be effective and selective in targeting osteosarcoma
[47]. Therefore, protein synthesis involved in MRPS7
and MTIF2 within the mitochondrion might also have a
potential connection with the development of osteosar-
coma. Vascular endothelial growth factor A (VEGFA) is
a classic angiogenic factor, which facilitates endothelial

proliferation, migration and new vessel formation [48].
Currently, VEGFA has been reported to be very import-
ant in evaluating the angiogenesis in osteosarcoma [49].
Inhibition of VEGFA can successfully suppress osteosar-
coma growth, metastasis and angiogenesis [50]. All these
highlight its therapeutic value in osteosarcoma. Indeed,
VEGFA pathway has been prioritized for the develop-
ment of antiangiogenic therapies in osteosarcoma [51].
Epidermal growth factor (EGF) promotes cell epithelial-
mesenchymal transition, metastasis, and progression of
osteosarcoma by activating MAPK and PI3K/AKT path-
way, which can be blocked by the EGFR-specific inhibi-
tor gefitinib [52]. Thus, EGF-targeting agents should be
evaluated to prevent osteosarcoma from deteriorating.
Among the 74 NPDEGs identified, notable dysregula-

tion of gene expression was observed clustered in im-
mune related diseases, phagocytosis, antigen procession
and presentation. Bone resorption is accomplished by
osteoclasts, which can be seen as highly specialized mac-
rophages [53]. Thus, bone microenvironment represents
a unique compartment of the immune system, in which
immunological cytokines form part of an intercellular
crosstalk that is relevant to the development of osteosar-
coma [54, 55]. Osteosarcoma cells control the recruit-
ment and differentiation of immune infiltrating cells and
establish a local immune tolerant environment that is fa-
vorable to the tumor growth [56]. This is in agreement
with the current demonstration that those NPDEGs in
osteosarcoma are clustered in multiple immune diseases
and T helper cells differentiation. Besides, osteoblasts
can express major histocompatibility complex II (MHC
class II) to present antigen [4]. Thus, deregulation of
genes involved in antigen presentation may be an early
event in osteosarcoma oncogenesis. MHC II is only
expressed on the surface of antigen presenting cells
(APC), such as macrophages, dendritic cells and B cells.
APC presents exogenous peptides or endogenous pep-
tides to helper T cells by binding MHC-II to peptides,
and thus informs that the body is being invaded [57].
Previous studies have shown that osteosarcoma cells can
express moderate to high levels of Herpes virus entry
mediator on the tumor [58], and osteosarcoma cells can

Table 3 Hub genes with high degree of connectivity in each module (Continued)

Category MCODE
module

Gene
symbol

Degree Type Full name Go BP ID KEGG pathways

GO:0070482, GO:0048871, GO:0051346,
GO:0036293, GO:0001666, GO:0002576,
GO:0001894, GO:0002685, GO:0002688,
GO:0045862, GO:0060627, GO:0071453,
GO:0001954, GO:0042692, GO:0007219,
GO:0001952, GO:0050920, GO:0030100,
GO:0060326, GO:0050678, GO:0051098,
GO:0002687, GO:0061138, GO:0016049,
GO:0045927

/: no significant related GO BP or KEGG pathway term
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be killed and phagocytosed by Killer Dendritic Cells
[59]. Therefore, during the process of malignant trans-
formation, osteosarcoma cells express some antigenic

substances, which are recognized by APC and presented
to helper T cells via MHC-II. In this way, APC helps to
connect innate and adaptive immunity to tumor. These

Fig. 6 PPI network construction and KEGG pathway analysis of modules. a PPI network constructed with the 764 NPDEGs. All cycle nodes stand
for upregulated genes, and all square nodes stand for downregulated genes. Genes in module 1 are in yellow, genes in module 2 are in green,
genes in module 3 are in pink. Seed nodes live at the center of each module. b-d The biological process categories associated with genes in
module 1 (b), module 2 (c), and module 3 (d) through GO enrichment analysis (FDR < 0.05). GO, Gene Ontology
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suggest that MHC-II mediates immune responses in the
tumor microenvironment, thus it could be an alternative
target for novel immune therapies and targeting antigen
presentation may be clinically valuable in early
intervention.
Among the 764 PMDEGs, notable dysregulation of

gene expression was observed in well-known metastatic
related pathways including CAMs, Focal adhesion and
ECM-receptor interaction. It was also found that the
tumor necrosis factor (TNF) signaling pathway, which is
always activated in human osteosarcoma cells [60], was
significantly correlated to osteosarcoma metastasis.
Hence, to abnormalize the function of the TNF signaling
pathway might be a potential target for chemotherapy of
advanced osteosarcoma [61]. Interestingly, cell cycle is
also the key signal involved in osteosarcoma metastasis.
Previous reports have revealed that cell cycle and
apoptosis are two major dysregulated events in human
malignancy cells [62]. Evolution of cancer is a complex
process. Potentially oncogenic proliferative signals can
couple to the induction of apoptosis, which restricts
subsequent clonal expansion and neoplastic evolution.
However, tumor progression occurs when these growth-
inhibitory mechanisms are thwarted by compensatory
mutations. Deregulated cell proliferation and the obli-
gate compensatory suppression of apoptosis provide a
minimal ‘platform’ that is necessary to support further
neoplastic progression, which in turn propels the tumor
cell and its progeny into uncontrolled expansion and
invasion [62].
The limitations of this study also should be recog-

nized. First of all, when analyzing the DEGs, in view of
the complexity of datasets in the study, it is impossible
to consider all important factors—for example, different
ages, races, regions, cell lineage as well as tumor stages
and classification of patient. Secondly, according to the
results, all the seven genes, which are continuously
deregulating during the oncogenesis and metastasis of
osteosarcoma, are actually up-regulated ones. Yet, the
mechanism of upregulation has not been clear. There-
fore, more evidences are required to find out the
biological foundation. Finally, this study mainly focuses
on analyzing the expression levels of genes involved in
tumorigenesis and metastasis. Some of these genes have
been reported as biomarkers for osteosarcoma, while the
role of HLA-DRA, MTIF2, MRPS7 and CDK20, should
also be further systematically investigated based on
actual diseased tissues or even cell lines and animal
models.
In conclusion, this study identified several DEGs that

may be involved in the carcinogenesis and metastasis of
osteosarcoma through comprehensive bioinformatics
analyses, and unveiled a series of hub genes and
pathways. However, further experimental studies are

needed to elucidate the biological function and under-
lying mechanism of these genes in osteosarcoma.
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