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Abstract

Background: Urothelial bladder cancer (BLCA) is one of the most common internal malignancies worldwide with
poor prognosis. This study aims to explore effective prognostic biomarkers and construct a prognostic risk score
model for patients with BLCA.

Methods: Weighted gene co-expression network analysis (WGCNA) was used for identifying the co-expression
module related to the pathological stage of BLCA based on the RNA-Seq data retrieved from The Cancer Genome
Atlas database. Prognostic biomarkers screened by Cox proportional hazard regression model and random forest
were used to construct a risk score model that can predict the prognosis of patients with BLCA. The GSE13507
dataset was used as the independent testing dataset to test the performance of the risk score model in predicting
the prognosis of patients with BLCA.

Results: WGCNA identified seven co-expression modules, in which the brown module consisted of 77 genes was
most significantly correlated with the pathological stage of BLCA. Cox proportional hazard regression model and
random forest identified TPST1 and P3H4 as prognostic biomarkers. Elevated TPST1 and P3H4 expressions were
associated with the high pathological stage and worse survival. The risk score model based on the expression level
of TPST1 and P3H4 outperformed pathological stage indicators and previously proposed prognostic models.

Conclusion: The gene co-expression network-based study could provide additional insight into the tumorigenesis
and progression of BLCA, and our proposed risk score model may aid physicians in the assessment of the prognosis

of patients with BLCA.
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Background

Urothelial bladder cancer (BLCA) is one of the most
prevalent cancers worldwide. According to the report of
the Chinese National Cancer Center, 80,500 Chinese
were diagnosed with BLCA and 32,900 cases died during
2015 [1]. Currently, it is a challenging issue to predict
the prognosis of BLCA patients since the options of the
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treatment are limited [2, 3]. The prognostic factors that
can be used by physicians to predict the cancer-specific
or overall survival are pathological grade and stage,
Tumor Node Metastasis (TNM) staging system, number
or size of tumors, and presence of carcinoma in situ [4—6],
where pathological stage and TNM staging system repre-
sent the simplest, fastest and most commonly used predic-
tion tools. Recently, it has been reported that traditional
prediction factors are less accurate at prediction than pre-
diction models incorporated molecular markers [7, 8].
The high-throughput sequencing methods along with
its improved sequencing accuracy and decreased costs
have greatly influenced the application of medical bio-
marker or signature in the cancer prognosis, prediction
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of recurrence, monitoring drug response, and developing
targeted therapies [7, 9-11]. Although considerable pro-
gress has been made in recent years in identifying the
molecular markers of disease and the development of
multifactorial tools that predict the prognosis of BLCA
[7-9], there are few qualified biomarkers are currently
available to apply in BLCA prognostic models. It is thus
imperative to identify and validate molecular biomarkers
and incorporate them into multivariable predictive tools.

The Cancer Genome Atlas (TCGA) is a large inte-
grated collection of clinical information and gene se-
quencing data, which allows to analysis in a systematic
way on underlying molecular mechanisms of various
cancers. A growing number of tumor sample datasets in
the TCGA project enhance the statistical power and the
ability to detect molecular defects in cancers. In
addition, the latest progress on integrated multi-omics
analyses had shed the new insight on cancer genomic
[12-17]. Weighted gene co-expression network analysis
(WGCNA), a systems biology algorithm, is extensively
used in cancer, genetics of species, and other complex
diseases research [18]. WGCNA can cluster functionally
correlated genes into separate modules that provide the
information on hub nodes based on the variability in the
RNA-Seq and microarray data among biological samples.
The modularity of the gene co-expression network
allows us to investigate its components independently to
further investigate network structures, biological
processes, candidate biomarkers. Moreover, modules are
more stable than individual genes, because the overall
function of a module can remain the same while individ-
ual gene expression can be replaced or changed by other
genes with similar redundant functions. Functional mod-
ules can, therefore, reveal more effectively the consistent
differences during BLCA tumorigenesis and progression.

In this study, WGCNA was performed on the BLCA
gene expression data retrieved from the TCGA data por-
tal to identify gene co-expression modules associated
with pathological stage and investigate the underlying
hub genes. Furthermore, we identified prognostic-related
biomarkers by performing Cox regression analysis and
random forest and incorporated them into a risk score
model for estimation of BLCA prognosis.

Methods

Data acquisition and pre-processing

The RNA-Seq raw count expression profile, Fragments
Per Kilobase Million (FPKM) normalized expression
profile, and clinical data of 414 BLCA samples and
corresponding 19 healthy controls were respectively
achieved from the TCGA data portal (https://cancergen-
ome.nih.gov/). Raw count expression data of 414 BLCA
samples and corresponding 19 healthy controls were used
for differential expression analysis. After eliminating six
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recurrent samples and four samples without pathological
stage information, the FPKM normalized gene expression
data of 404 patients with BLCA was used for WGCNA
analysis. The microarray gene expression profile and re-
lated clinical data of GSE13507 were obtained from Gene
Expression Omnibus (GEO) and used to further validate
our results (https://www.ncbi.nlm.nih.gov). The baseline
characteristics of TCGA dataset and GSE13507 dataset
were shown in Additional file 1: Table S1 and
Additional file 2: Table S2.

Screening for differentially expressed genes (DEGs) and
enrichment analysis
To ensure the reproducibility and consistency of DEGs,
we used “limma”, “edgeR”, and “DESeq” R packages to
screen DEGs between tumor and normal samples, with
|log2 Fold Change|>1 and adjusted P-value <0.05 as
the cut-off values [19-22] For “limma” package, we used
“voom” function with “quantile” parameter to normalize
the expression level and then used “ImFit” followed by
“eBayes” functions for fitting. For “edgeR”, we used
“calcNormFactors” function to normalize the expression
values and then used “exactTest” function to fit a
negative binomial distribution of Trimmed Mean of M
values (TMM) normalized counts. For “DESeq”, we used
“estimateSizeFactors” followed by “counts” function to
normalize the expression values. We then used the
“nbinomTest” function to fit a negative binomial distri-
bution of the scale factor normalized expression level.
Moreover, the Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) enrich-
ment analyses for DEGs were performed, with Benjamini
and Hochberg (BH) adjusted P-value <0.05 as the cut-
off value [23].

WGCNA and protein-protein interactions

WGCNA was performed on DEGs to construct scale-
free gene co-expression networks, with min-ModuleSize
of 20 and mergeCutHeight of 0.25 [24]. An appropriate
soft-threshold power was selected according to standard
scale-free distribution. The Intramodular Connectivity
was used to define the most highly connected hub gene
in a module [24]. The co-expression network of genes
within the pathological stage-related module was
visualized with Cytoscape software (version 3.5.1.). The
protein-protein interactions (PPIs) data of genes within
the pathological stage-related module were retrieved
from the STRING database (http://string-db.org/).

Construction of prognostic rick score model

We assessed the independent prognostic value of genes
in the co-expression module associated with pathological
stage using the univariate Cox proportional hazard
regression model [25]. Subsequently, the analyses of
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random forest (RF) and multivariate Cox proportional
hazard models were performed on the genes obtained by
the previous step to select optimal prognostic biomarker
combinations [26]. The biomarkers were further used to
develop the risk score model and the formula of risk
score is defined as follows:

n
Risk score = E B * x;
i

where S; indicates the coefficient for each gene and x;
indicates the z-score transformed relative expression
value of each gene. Patients samples were divided into
high and low-risk groups based on the median cutoff of
the risk score and their survival difference was compared
with Kaplan-Meier (K-M) survival analysis. The area
under the ROC curve (AUC) was used to estimate the
performance of the risk score model in the TCGA data-
set and GSE13507 dataset. In addition, we assess the
performance of the risk score model in an independent
microarray dataset (GSE13507).

A nomogram was constructed to estimate one, three
and five-year survival rate of patients with BLCA.

Statistical analysis

All statistical analysis was performed using R statistical
software (https://www.r-project.org/, v3.4.2). The correl-
ation between biomarker’s expression and clinical traits
of BLCA patients was assessed using independent sam-
ple t-test. The KEGG and GO enrichment analyses were
performed with “clusterProfiler”. The WGCNA was car-
ried out with “WGCNA”, the random forest was carried
out with “randomforestSRC”, and the Univariate and
multivariate Cox proportional hazards regression sur-
vival analyses were carried out with “survival”. The K-M
survival curves were plotted with “survival’, the ROC
curves were plotted with “survivalROC”, and the nomo-
gram was plotted with “rms”. The P-value of less than
0.05 was considered as statistically significant.

Results

DEGs and enrichment analysis

The pre-processing step obtained 19,181 mRNAs.
Furthermore, a total of 1064 overlapping DEGs were
identified by “limma”, “edgeR”, and “DESeq”, with 242
up-regulated DEGs and 822 down-regulated DEGs. An
UpSet plot indicating overlapping DEGs was presented
in Fig. 1a. GO and KEGG functional enrichment analysis
were used to detect the biological mechanism of DEGs
in BLCA. According to the results in Fig. 1b and
Additional file 4, the DEGs were most significantly
enriched in transcription factor activity RNA polymerase
II core promoter proximal region sequence-specific
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binding of GO Molecular Function, muscle system
process of GO Biological Process, actin cytoskeleton of
GO Cellular Component, and MAPK signaling pathway
of KEGG.

Identification of gene co-expression network and
protein-protein interactions

According to scale independence and mean connectivity
plot (Additional file 3: Figure S1A, B), we picked 5 as
the proper soft-thresholding power which can raise co-
expression similarity to achieve consistent scale-free
topology. A total of seven modules that are highly co-
expressed and ranged in size from 45 to 470 genes were
identified (Fig. 1c). Each co-expression module was
assigned by an arbitrary brilliant color for reference, the
non-co-expression group was designated as a gray color.
A topological overlap matrix (TOM) heatmap plot for
co-expression modules was shown in Additional file 3:
Figure SI1C. The details of GO functional enrichment
analysis for each module were provided in
Additional file 5. The module eigengenes (MEs) based
on the first principal component were calculated for
each module to assess the association between modules
and clinical information, and the corresponding module-
clinical trait correlation was visualized as a heatmap plot
(Fig. 1d). The results showed that the brown module
possessed the highest correlation with pathological stage
(r=0.24, P<0.01). A heatmap plot for Pearson’s correl-
ation coefficient (PCC) of 77 genes in the brown module
was provided in Additional file 3: Figure S1D. We
further attempted to identify hub genes in the brown
module. As a result, DCN, OLFML1, FBN1, SGCD,
EMILIN1, PODN, LRRC32, TGFB3, VSTM4, and FBLN5
were identified as hub genes and the corresponding co-
expression network was visualized with Cytoscape
software (Fig. 2a).

In addition, the protein-protein interactions (PPIs) of
77 genes were examined using the STRING database.
We found that 37 genes formed a complex functional
network, indicating that each of them has at least one
functionally similar or interacted gene as the neighbor
(Fig. 2b). Remarkably, we found that six hub genes
(DCN, EMILIN1, FBLN5, FBN1, SGCD, and TGFB3)
obtained by the WGCNA tended to be in the central
hub of the network generated using the STRING data-
base, thereby demonstrating the importance of these
genes and the accuracy of our method. We also evalu-
ated the prognostic significance of six hub genes in pa-
tients with BLCA. The K-M survival analysis revealed
that the higher expression level of DCN, FBLN5, SGCD,
and TGFB3 was associated with the worse overall
survival, suggesting that they may play an oncogenic role
(Fig. 3a-f).
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Fig. 1 Enrichment analysis and weighted correlation network analysis for differentially expressed genes (DEGs). a An UpSet plot illustrating the
overlaps among DEGs identified by edgeR, Limma, and DESeq. b Bubble plots for enriched GO and KEGG terms. The x-axis represents the
-log10P-value) of each term and the y-axis represents the number of genes in each term. ¢ Dendrogram generated using the WGCNA. d PCC
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negative. Each PCC value is accompanied by the corresponding P-value in brackets
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Identification of prognostic biomarkers and construction
of risk score model

We carried out a univariate Cox regression analysis of
77 genes within the brown module to investigate the
independent prognostic value. As a result, 43 genes were
identified and the hazard ratios (HRs) and 95% confi-
dence intervals of each gene were presented in Fig. 2c.
TPST1, LAMA?2, P3H4, CCDC80, and MFAP5 were the

highest ranked risk markers as presented in
Additional file 6. It is worth noting that the coefficients
of 43 signatures were more than 1, indicating 43 inde-
pendent prognostic biomarkers are risk indicators. RF
and multivariate Cox regression analysis were performed
on 43 biomarkers to identify an optimal combination of
biomarkers and to construct a risk score model. As a re-
sult, TPST1 and P3H4 were identified as an optimal
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combination of independent prognostic factors. The K-
M survival curve revealed that high TPST1 or P3H4
expression conferred worse overall survival (Fig. 4a, b).
The independent t-test analysis showed that the high
pathological stage group was characterized by high ex-
pression of P3H4 and TPST1 (Fig. 4c, d). Given that
their high association with pathological stage and sur-
vival, P3H4 and TPST1 were therefore chosen as the

prognostic signatures for developing a risk score model.
The risk score of each patient sample was calculated as
the following: Risk Score =0.029116 * TPST1 + 0.018074
* P3H4. As expected, the K-M survival curve revealed
that patients with high risk score were correlated with
worse overall survival (Fig. 4e). The detailed risk score,
survival information and gene expression level of two
biomarkers were shown in Fig. 4f,
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The AUC revealed that the performances of the risk
score model for prediction of first, third and fifth-year
survival rate in the TCGA dataset reached 0.665, 0.635,
and 0.629, respectively (Fig. 5a). The multivariate Cox
proportional hazard model was employed for assessment
of the impact of clinical indicators and risk score. As
shown in Fig. 5b, the risk score model showed the high-
est hazard ratio (HR) of 1.59, with a 95% confidence
interval ranged from 1.2128 to 2.165, suggesting the risk
score model may have a higher BLCA prognostic effect
than other indicators including the pathological stage.
Remaining covariate clinical traits, like gender, BMI
(Body Mass Index), and smoking history failed to attain
statistical significance (P > 0.05). Besides, the correlation

analyses between risk score and clinical indicators
showed the risk score model was significantly associated
with pathological stage and age (¢-test, P<0.05), while
independent from BMI, gender and smoking history
(Fig. 5¢).

Validation of risk score model and development of
nomogram

We evaluated the performance of the risk score model
on an independent microarray dataset GSE13507. The
results showed that the AUC values of the risk score
model for one-year survival rate, three-year survival rate,
and five-year survival rate were 0.758, 0.711, and 0.66,
respectively. (Fig. 5d). It was found that our proposed
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model significantly outperformed the previous models
through comparative analyses (Table 1). K-M survival
curves showed that the survival rate of the high risk
group was significantly lower than that of the low risk
score group (Fig. 5d) and patients with high risk
score can be characterized as high expression of
TPST1 and P3H4 (Fig. 5e), which together were in
close agreement with the results observed in the
TCGA dataset, suggesting again the importance of the

risk score model in prognosis prediction of BLCA. At
last, based on the risk score model, pathological stage,
and age, we delineated a nomogram to predict the
first, third and fifth-year survival rate. In accordance
with the results of multivariate Cox proportional haz-
ard model, the risk score model contributed the most
risk points ranged O to 100, whereas the other clinical
information contributed much less (C-index =0.67;
Fig. 5f).
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Fig. 5 Performance of the risk score model in the training dataset and testing dataset. a ROC curve estimating the performance of the risk score
model predicting first, third, and fifth-year survival in the TCGA dataset (training dataset). b Multivariate Cox regression analysis for the risk score
model and other clinical traits. Hazard ratios, 95% confidence intervals, and P-value were displayed. ¢ The correlation between the risk score and
other clinical traits were calculated via independent t-test, corresponding P-values were shown at the top. d ROC curve estimating the
performance of the risk score model predicting first, third, and fifth-year survival in the GSE13507 dataset (testing dataset). e Kaplan-Meier survival
plots for high and low risk score groups in the GSE13507 dataset. f The detail information of the low and high score groups in the GSE13507
dataset (upper); the survival status and time of GSE13507 cohort (middle); heatmap for the TPST1 and P3H4 expression in the GSE13507 dataset,
the color from green to red shows a trend from the low expression to the high expression (lower). g A prognostic nomogram for predicting first,
third and fifth-year survival rate was delineated

Table 1 A comparison of our proposed model to other models

Author (Year) Ref. Predicted survival AUC/samples AUC/samples Number Genes
rate (Year) (Training dataset) (Testing dataset) of genes

Our study NA 3 0.635/n =404 0.711/n=165 2 P3H4; TPST1

H. Zhou et al. (2015) [36] 5 0.74/84 NA/NA 8 miR-141-3p; miR-200c-3p;
miR-21-5p; MiR-145-5p; miR-
125b-5p; MiR-199a-5p;
let-7¢; miR-99a-5p

F. Peng et al. (2017) [37] 5 0.664/n =189 0.681/n=188 3 hsa-mir-337; hsa-mir-3913-2;
hsa-mir-497

Q. Liu et al. (2017) [38] 3 0.647/NA NA/NA 3 RCOR1; ST3GALS5; COL10A1

C Liu et al. (2018) [39] 5 083/n=119; 0.68/n=120 6 ACADS; C1QTNF9B; RP11-60
1.3.1; CTD-319515.3; has-miR-
3913-1; has-miR-891a

J.Chu et al. (2018) [40] 3 0.615/ n =407 NA/ NA 7 ZNF230; BCL2L14; AHNAK;
TMEM109; APOL2; AGER;
AOC2

Z. Xu et al. 2019) [41] NA 0.735/ n=412 NA/ NA 11 MXRA7; EMP1; TNFA1P8L3;

SERPINB12; SAPCD1; GABRGT;
PLEKHG4B; ABCA4; PTPRR;
XAGE2; PEX5L

Note: NA represents “not available”, Ref. represents References
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Discussion

The recent study investigated the gene co-expression
network related to the pathological stage of BLCA and
presented a risk score model based on the expression
level of TPST1 and P3H4. The model performed well in
predicting the one-year, three-year, and five-year survival
rate of patients with BLCA.

We used the RNA-Seq data of BLCA downloaded
from the TCGA to obtain 1064 differentially expressed
genes, which were analyzed by the WGCNA to identify
the brown co-expression module comprised of 77 patho-
logical stage-specific genes. We observed that six genes
(DCN, EMILIN1, FBLN5, FBN1, SGCD, and TGFB3)
were hub genes in the brown co-expression module and
were also located at the central hub of the PPI network
generated using the STRING database, indicating that
they may play an important role in the tumorigenesis
and progression of BLCA. Lushun et al. have reported
that FBN1, COL3A1, COL5A2, and POSTN were hub
genes in both co-expression module and PPI network in
bladder cancer [27]. Hu et al. found that the expression
level of FBLN5 was downregulated in human bladder
carcinoma samples, resulting in increased proliferation
and invasiveness [28]. It is worth mentioning that,
CXCL12, THBS1, MMP11, RECK, and TIMP-2 within
the brown module also have an effect on the progression
of BLCA and prognosis of patients with BLCA [29].

By employing Cox proportional hazard regression
models integrated with random forest, we identified
TPST1 and P3H4 as prognostic indicators. Further
investigation found that the elevated TPST1 or P3H4
expression were significantly associated with poor
survival and high tumor pathological stage. Moreover,
we developed a TPST1 and P3H4-based risk score
model, which outperforms the pathological stage and
previously proposed models in the prediction of the
prognosis of patients with BLCA. The group with high
risk score was characterized by the high pathological
stage and poor survival in the TCGA and GSE13507
datasets. It has been reported that TPST1 is overex-
pressed in bladder cancer, oral squamous cell cancer,
breast cancer and barretina sarcoma [30-32] and
involved in the invasion and metastasis of head and neck
carcinoma and nasopharyngeal carcinoma [33, 34].
Although P3H4 has been reported as a tumor-associated
auto-antigen in patients with prostate cancer, its bio-
logical functions in other cancers remain elusive [35].

The approach combining the WGCNA with the Cox
Proportional-Hazards Model and random forest in this
study has achieved reliable results regarding the
survival-related co-expression network identification and
risk score model construction. It is worth noting that we
can enhance our study in the following aspects: (i) The
performance of risk score model was estimated based on
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bioinformatics approaches, so the accuracy was affected
by the data pre-processing, threshold criteria and statis-
tical methods. Therefore, the application of the risk
score model still needs to be verified in large cohort
studies. (ii) Further studies are needed to elucidate the
mechanism how hub genes in the brown module mutu-
ally interact and further influence BLCA progression.
(iii) The functional analysis of P3H4 and TPST1 is of
great value in understanding pathogenesis, guiding
medications and treatment regimens, and analyzing drug
resistance and prognosis, and it will be our next focus.

Conclusion

In conclusion, we identified the gene co-expression
module associated with pathological stage and investi-
gated the underlying hub genes. Besides, we identified
prognostic-related biomarkers and incorporated them
into a risk score model for estimation of BLCA progno-
sis. Our findings will aid in a deeper understanding of
the tumorigenesis and progression of BLCA. The risk
score model we proposed may have important clinical
value to the prognosis of patients with BLCA.
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