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Abstract

Background: This study aimed to identify potential crucial genes and construction of microRNA-mRNA negative
regulatory networks in osteosarcoma by comprehensive bioinformatics analysis.

Methods: Data of gene expression profiles (GSE28424) and miRNA expression profiles (GSE28423) were
downloaded from GEO database. The differentially expressed genes (DEGs) and miRNAs (DEMIs) were obtained by
R Bioconductor packages. Functional and enrichment analyses of selected genes were performed using DAVID
database. Protein–protein interaction (PPI) network was constructed by STRING and visualized in Cytoscape. The
relationships among the DEGs and module in PPI network were analyzed by plug-in NetworkAnalyzer and MCODE
seperately. Through the TargetScan and comparing target genes with DEGs, the miRNA-mRNA regulation network
was established.

Results: Totally 346 DEGs and 90 DEMIs were found to be differentially expressed. These DEGs were enriched in
biological processes and KEGG pathway of inflammatory immune response. 25 genes in the PPI network were
selected as hub genes. Top 10 hub genes were TYROBP, HLA-DRA, VWF, PPBP, SERPING1, HLA-DPA1, SERPINA1, KIF20A,
FERMT3, HLA-E. PPI network of DEGs followed a pattern of power law network and met the characteristics of small-
world network. MCODE analysis identified 4 clusters and the most significant cluster consisted of 11 nodes and 55
edges. SEPP1, CKS2, TCAP, BPI were identified as the seed genes in their own clusters, respectively. The miRNA-mRNA
regulation network which was composed of 89 pairs was established. MiR-210 had the highest connectivity with 12
target genes. Among the predicted target of MiR-96, HLA-DPA1 and TYROBP were the hub genes.

Conclusion: Our study indicated possible differentially expressed genes and miRNA, and microRNA-mRNA negative
regulatory networks in osteosarcoma by bioinformatics analysis, which may provide novel insights for unraveling
pathogenesis of osteosarcoma.

Keywords: Osteosarcoma, Bioinformatics, Functional enrichment analysis, Regulatory network

Background
Osteosarcoma is the most common primary malignant
bone cancer in children and adolescents, which originates
from mesenchymal stem cells and exhibits osteoblastic
differentiation [1]. The incidence rate of osteosarcoma is
approximately one to three cases per million each year
worldwide [2]. With the development of surgery and
chemotherapy, the survival rate in osteosarcoma patients

without distal metastasis has been largely increased [3].
However, despite improvements in osteosarcoma therapy
over the last three decades, the overall survival of patients
has reached a plateau and about 30–40% of the patients
experience progressive metastasis within 5 years after
diagnosis and die [4]. Therefore, it is extremely necessary
to explore novel biomarkers and therapeutic targets for
osteosarcoma.
In recent years, the developments in molecular biology

have provided some new insights into potential diagnos-
tic and therapeutic biomarkers for osteosarcoma. For
instance, it was found that SPARCL1 was downregulated
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in osteosarcoma by epigenetic methylation of promoter
DNA and activating the expression of SPARCL1 could
inhibit the osteosarcoma metastasis in vitro and in vivo
[5]. NRP2 was reported to be up-regulated in osteosar-
coma cell lines and tissues, and associated with poor
survival of osteosarcoma patients [6]. On the other hand,
numerous studies shows that microRNAs (miRNAs)
may play essential roles in osteosarcoma tumorigenesis
by negatively regulating expression level of target gene.
MiR-497, for instance, can activate P21 expression by
inhibiting the expression of MAPK/Erk signaling
pathway, and promote the apoptosis of osteosarcoma
cells [7]. However, the miRNA-mRNA negative regula-
tion network in osteosarcoma had been not fully delin-
eated by now.
In this study we used bioinformatics methods to

integrate miRNA and mRNA expression data, which are
available in the GEO database, to identify differentially
expressed genes (DEGs) and miRNAs (DEMIs) between
osteosarcoma and normal cell, and establish the
miRNA-mRNA negative regulation network, aiming to
provide valuable information for use in defining the
mechanism of pathogenesis in osteosarcoma.

Methods
Identification of differentially expressed genes and
miRNAs from public microarray data
To explore the DEGs and DEMIs in osteosarcoma com-
pared to normal bone, the public gene expression
(GSE28424) and miRNA expression (GSE28423) profiles
were downloaded from the Gene Expression Omnibus
(GEO, http://www.ncbi.nlm.nih.gov/geo). These profiles
were deposited by Namløs HM et al. in 2011 and
composed with the same cell lines: 19 OS cell lines (case
group) and 4 normal bone samples (control group) [8].
Then, the dataset was analyzed by R Bioconductor
packages and raw datasets were normalized based on the
preprocess Core package and the DEGs and DEMIs were
screened out via the limma package through the cut-off
criteria of adjusted P-value< 0.01 and |Log2(FC)| > 2.

Functional and pathway enrichment analysis
The Database for Annotation, Visualization and Inte-
grated Discovery (DAVID, https://david.ncifcrf.gov/) was
used to perform functional and pathway enrichment
analysis. DAVID is a systematic and integrative func-
tional annotation tools which allows investigators to
unravel biological meaning behind large list of genes [9].
Gene ontology (GO) analysis including the cellular com-
ponent (CC), molecular function (MF), and biological
process (BP) [10] and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analysis [11]
were carried out for the DEGs. P < 0.05 was regarded as
statistical significance.

Protein–protein interaction (PPI) network construction
and module analysis
In order to interpret the molecular mechanisms of key
cellular activities in osteosarcoma, The online tool,
Search Tool for the Retrieval of Interacting Genes
database (STRING), was used to construct PPI network
of the DEGs [12]. The interaction score of not < 0.7
(high confidence score) was considered significant and
the PPI was visualized.
The relationships among the DEGs were analyzed by

plug-in NetworkAnalyzer of Cytoscape software for the
characteristics of small-world network through calculat-
ing the network properties such as distribution of
network node degree, distribution of the shortest path,
average aggregation coefficient and proximity to the
center [13]. Subsequently, the hub genes were selected
according to connection degree. Moreover, Molecular
Complex Detection (MCODE) was applied to find clus-
ters of genes in PPI network. “Degree cutoff = 2”, “node
score cutoff = 0.2”, “k-core = 2” and “max. depth = 100”
were set as the cut-off criterion.

Prediction of miRNA targets
The target genes of DEMIs were predicted through the
Targetscan (http://www.targetscan.org/), an online
program that predicts targets of miRNAs by seeking the
specific sequence complementary to the seed region of
each miRNA. According to the predicted efficacy of
targeting as calculated using cumulative weighted con-
text++ scores of the sites, predicted targets are ranked.
In this study, the genes with the cumulative weighted con-
text++ scores ≤ − 0.4 were selected as target genes of each
miRNA. Furthermore, we only selected the reverse pairs
that contained the DEMIS and overlapping genes of DEGs.
Finally, miRNA–mRNA negative regulatory network
depicting interactions between miRNAs and their potential
targets in osteosarcoma was visualized using Cytoscape.

Results
Identification of DEGs and DEMIs
Compared with normal bone samples, a total of 346
DEGs were identified in the osteosarcoma cells, which
contained 43 up-regulated and 303 down-regulated
genes. The top ten up-regulated and down-regulated
genes are listed in Table 1. In total, 90 DEMIs were
found to be differentially expressed. 58 DEMIs were
downregulated and 32 DEMIs were upregulated. The
top ten significantly differentially expressed miRNAs are
showed in Table 2.

GO functional annotation and pathway enrichment
The top 10 significant terms of GO functional annota-
tion and pathway enrichment analysis in DAVID were
illustrated as Fig. 1.
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In the CC ontology, we found that the majority of
enriched categories were relevant to extracellular compo-
nents, such as extracellular exosome(120 genes), extracel-
lular space (77 genes), extracellular region (72 genes), and
extracellular matrix (20 genes). The second majority of
enriched categories were associated with cytosol (95
genes). In addition, the other enriched CC GO terms
contained cell surface (25 genes), MHC class II protein
complex (8 genes) and proteinaceous extracellular

complex (18 genes). In the BP ontology, the regulation of
inflammatory immune response items constitute the
majority of enriched GO categories, including immune
response (35 genes), innate immune response (26 genes),
inflammatory response (26 genes), defense response to
Gram-positive bacterium (12 genes), defense response(11
genes) and antigen processing and presentation (9 genes)
and antigen processing and presentation of peptide or
polysaccharide antigen via MHC class II (7 genes). The
other enriched BP GO terms contained platelet degranula-
tion (12 genes), muscle filament sliding (9 genes)and
oxygen transport (6 genes). In the MF ontology, the
binding-related items constitute the majority of enriched
GO categories, including actin binding (17 genes), heparin
binding (13 genes), heme binding (11 genes), protease
binding (10 genes), collagen binding (9 genes), peptide
antigen binding (7 genes) and oxygen binding (7 genes).
Besides, the other enriched categories comprised items
related to structural constituent of muscle (10 genes),
oxygen transporter activity (6 genes) and MHC class II
receptor activity (6 genes).
Furthermore, the KEGG pathways of DEGs mainly

involved in inflammatory immune response, which
included Phagosome (19 genes), Staphylococcus aureus
infection (15 genes), Cell adhesion molecules (CAMs)
(15 genes), Systemic lupus erythematosus (14 genes),
Asthma (11 genes) and et al.

PPI network construction, module analysis and hub gene
selection
PPI networks were constructed on the basis of STRING
database and displayed in Fig. 2. We also analyzed the
network properties, as shown in Fig. 3a–d. We could see
the distribution of network node degrees followed a pat-
tern of power law network in Fig. 3a, proximity to center
in Fig. 3b, the average clustering coefficient in Fig. 3c
and fromthe shortest path in Fig. 3d and we could also
see that they meet the characteristics of small world net-
work. When “Degree≥10” was set as the cut-off criterion,
25 genes in the PPI network were selected as hub genes
in osteosarcoma. Top 10 hub genes were TYROBP, HLA-
DRA, VWF, PPBP, SERPING1, HLA-DPA1, SERPINA1,
KIF20A, FERMT3, HLA-E, and showed in Fig. 2. These
hub genes might play crucial roles in osteosarcoma.
Subsequently, when “score ≥ 5” was defined as the cut-

off criterion in MCODE, 4 clusters were identified from
PPI network, and the most significant cluster consisted
of 11 nodes and 55 edges. Furthermore, MCODE ana-
lysis showed that each cluster contained one seed gene.
SEPP1 (one of the hub genes), CKS2 (the predicted
target of MiR-513c), TCAP (one of the predicted target
of MiR-18a), BPI (one of the predicted target of MiR-93)
were identified as the seed genes in their own clusters,
respectively [Fig. 4].

Table 1 The most significant up-regulated and down-regulated
genes

Gene symbol Log2(FC) adj.P.Val

up-regulated

CBS 3.44 4.06E-05

TMSL8 3.35 0.004377385

PSAT1 3.20 0.002425845

PHGDH 3.07 2.24E-06

ASNS 2.91 0.0002163

TUBB3 2.73 0.006893245

MGC39900 2.63 0.003410321

UBE2C 2.62 0.000193362

PBK 2.51 9.68E-05

LARP6 2.48 0.00171183

down-regulated

HBB −7.79 5.88E-34

HBA1 −7.33 2.86E-23

MMP9 −6.34 1.09E-10

CD74 −5.84 1.03E-16

S100A8 −5.83 1.21E-08

VWF − 5.64 1.07E-11

HLA-DRA −5.54 1.27E-10

LYZ −5.43 2.53E-12

C1QA −5.28 6.33E-25

TYROBP −5.27 1.17E-21

Table 2 The most significantly differentially expressed miRNAs

miRNA Log2(FC) adj.P.Val

hsa-miR-451 −15.39 2.80E-07

hsa-miR-144 −9.27 9.93E-09

hsa-miR-142-3p −8.33 0.000179008

hsa-miR-223 −7.52 3.60E-05

hsa-miR-126 −6.35 4.93E-05

hsa-miR-142-5p −6.12 2.81E-07

hsa-miR-9 6.04 0.00168538

hsa-miR-18a 6.03 0.000307596

hsa-miR-150 −5.94 0.000189034

hsa-miR-486-5p −5.20 2.25E-05
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Fig. 1 Gene ontology and pathway enrichment analysis of the differentially expressed genes in osteosarcoma

Fig. 2 The protein-protein interaction network for the the differentially expressed genes and miRNA-target gene regulatory network in osteosarcoma.
Circular nodes in light blue represent the differentially expressed genes; diamond nodes in yellow represent the hub genes; Circular nodes in red
represent the screened out differentially expressed miRNAs and arrows in nodes represent the change trend of miRNAs
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miRNA-mRNA negative regulation network
Through the TargetScan, the target genes of 90 DEMIs
were predicted. By comparing target genes with DEGs,
we screened out 35 DEMIs (25 upregulated and 10
downregulated miRNA) and 78 DEGs (67downregulated
and 11 upregulated mRNA), presented an expression
trend opposite to each other in osteosarcoma. And then,
the miRNA-mRNA regulation network which was com-
posed of 89 pairs was established and shown in Fig. 2. In
our study, miR-9, the most significantly upregulated
among these screened out DEMIS, was predicted to 2
downregulated target, including CEACAM6 and PDK4.
MiR-210 was with the highest connectivity with target
genes, targeting 12 differentially expressed genes
(ANGPTL4, AQP1, ARHGAP25, BTG2, CD247, DNA-
SE1L3, LYL1, P2RY8, SH2D3C, SRL, STAT5A,
TNFRSF1B), that might indicate its important role in
osteosarcoma. Among the predicted target of MiR-96,
HLA-DPA1 and TYROBP were the hub genes. More-
over, several genes were predicted to the common
targets of different miRNA. For instance, CSF1R, one of

the hub genes, was predicted as the common target of
miR-149 and miR-22.

Discussion
Unraveling the mechanisms of the initiation and devel-
opment of osteosarcoma would benefit the diagnosis,
treatment and prognosis evaluation. In present study,
two types of microarray datasets: gene expression profile
and miRNA expression profile were downloaded from
the GEO and analyzed for their relationship in osteosar-
coma. Compared with normal bone samples, a total of
346 DEGs were identified in the osteosarcoma cells, con-
taining 43 up-regulated and 303 down-regulated genes.
CBS (cystathionine-β-synthase cancer), the most regu-
lated gene in this study, was found to be upregulated in
many types of tumors, such as multiple myeloma [14],
colorectal cancers [15], bladder cancer [16] and et al.,
and downregulation of CBS help inhibit carcinogenesis.
However, to our knowledge, there was no report about
CBS in osteosarcoma, so it might be a novel target for
the diagnosis or treatment of osteosarcoma.

Fig. 3 PPI network analysis of DEGs for characteristics of small-world network. (a) Distribution of degrees (b) the proximity to the centre (c) average
aggregation coefficient (d) distribution of the shortest path
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As was suggested by DAVID analysis, the DEGs in
osteosarcoma were enriched in biological processes and
KEGG pathway of inflammatory immune response.
Molecular function of GO analysis showed enrichment
in binding-related items. It is reasonable because
immune system has significant roles in tumorigenesis.
At the cancer initiation stage, the immune system can
recognize tumors expressing foreign antigens and eradi-
cate tumors via innate and adaptive immune activation
[17]. If tumor cells are not eliminated via recognition by
the immune system, tumor cells can enter an equilib-
rium phase and evolve a number of phenotypic changes
and dampen immunogenicity to escape the immune
surveillance [18, 19]. In other words the immune micro-
environment helps cancer cells to select the dominant
cells so that the tumor can progressively grow unhin-
dered. Therefore, osteosarcoma tumors are infiltrated
with immune cells that may have the ability to fight
tumor cells [20] but are tolerized due to immune escape
of the tumor cells [21, 22]. Cellular component of GO
analysis showed the majority of enriched categories were

relevant to extracellular components, such as extracellu-
lar exosome, extracellular space, extracellular region,
and extracellular matrix. Tumor microenvironment has
complementary effects on the development and metasta-
sis of osteosarcoma through extracellular secretion,
alteration of phenotype type of tumor cells, immune
escape and providing proper acid-base environment for
tumor cells [23].
PPI network of DEGs illustrated the overview of their

functional connections, which followed a pattern of
power law network from the shortest path, average
aggregation coefficient, node degree and proximity to
the center and met the characteristics of small-world
network, and of which 25 hub genes were selected. Most
of them were enriched in inflammatory immune
response and platelet degranulation. As we known, the
activated degranulated platelet accumulated on the
surface of tumor cell to protect them from the immune
system recognization and eradication. After module
analysis of the PPI network, 4 seed genes were selected,
such as SEPP1, CKS2, TCAP and BPI genes.

Fig. 4 Four significant modules selected from protein-protein interaction network
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SEPP1, a major selenium transport protein, has
endogenous antioxidant function through catalyzing the
oxidation of glutathione by a hydrogen peroxide or
phosphatidylcholine hydroperoxide [24]. It was found
that SEPP1 levels and activity are significantly decreased
in colon tumors, human prostate tumors, C3(1)/Tag
transgenic ouse tumors, and prostate cancer cell lines
[25, 26]. Furthermore, several single nucleotide polymor-
phisms (SNPs) have been identified in SEPP1 that may
contribute to decreased expression in colorectal aden-
omas and have been associated with cancer risk [27, 28].
CKS2 (Cyclin-dependent kinases regulatory subunit 2), a
cyclin-dependent kinase interacting protein, is essential
for cell cycle regulation. Elevated expression of CKS2
has been demonstrated in multiple types of human ma-
lignancies. In prostate cancer, aberrant expression of
CKS2 contributes to tumorigenesis by enhancing cell
proliferation and inhibiting programmed cell death [29].
In a papillary thyroid carcinoma, miR-26a [30] and miR-
7 [31] modulates tumor growth and tumorigenesis by
targeting CKS2. In colorectal cancer cells, attenuation of
CKS2 results in decreased cell viability, increased cell
apoptosis and cell cycle arrest [32]. In almost the same
way, aberrant expression of TCAP and BPI was in rela-
tion with multiple types of tumor. However, no study
has associated these seed genes with osteosarcoma,
which might indicate them as the new targets.
It has been shown that miRNAs induce RNA silencing

by targeting 3’-UTR of mRNAs, and that miRNA func-
tions as oncogenes or oncosuppressor depending on the
function of suppressed targets. In present study, the
miRNA-mRNA regulation network which was composed
of 89 pairs was established through the TargetScan and
comparing target genes with DEGs, in which MiR-210
directly regulated 12 differentially expressed genes and
was significantly upregulated in osteosarcoma. Mounting
evidence identified MiR-210 as an oncogenic role in
generating osteosarcoma; increased expression of MiR-
210 is associated with decreased overall survival and
progression-free survival, and more frequently occurred
in osteosarcoma tissues with large tumor size, poor
response to preoperative chemotherapy, and positive
metastasis [33, 34]. Nonetheless, the defined roles of
miR-210 in osteosarcoma malignant progression, espe-
cially the target gene of miR-210 in osteosarcoma dediffer-
entiation, was insufficiently researched. Only NFIC, a
validated target of miR-210 from miRBase and a DEG
from a gene expression profile GSE38135, had been
shown to play important role in TGF-b1-induced osteo-
sarcoma dedifferentiation and can be significantly reduced
by miR-210 treatment in human osteosarcoma cell line
MNNG/HOS [35]. So far, the role of other miR-210-gene
pairs in osteosarcoma was not reported. HLA-DPA1 and
TYROBP, the hub genes in PPI network were regulated by

MiR-96, but their function were not researched in osteo-
sarcoma too. These might imply that miRNA and their
target genes may represent potential novel therapeutic
targets or biomarkers for osteosarcoma.
The limitation in our work is that the pathogenesis of

key miRNA and gene in osteosarcoma need to be eluci-
dated through experiments in vivo and in vitro.

Conclusion
In summary, our study was intended to identify key genes
in osteosarcoma and construct regulatory networks
between miRNA and mRNA through bioinformatics
analysis. 25 hub genes and 4 seed genes were identified
according to PPI network.
Functional and pathway enrichment analysis indicated

immune system played significant roles in osteosarcoma
tumorigenesis. Additionally, deregulated miRNAs such
as MiR-210 and MiR-96, might exert their biological
functions through their targeting mRNAs. Moreover, our
results could provide novel sights in the mechanisms of
the initiation and development of osteosarcoma, that
would become the new diagnostic biomarkers and
treatment targets for osteosarcoma.
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