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Abstract 

Background Myelodysplastic syndromes (MDS) are heterogeneous and clonal hematological disorders. The role 
and mechanism of necroptosis in MDS remain poorly understood.

Methods mRNA expression profiles and single-cell RNA-sequencing (scRNA-seq) data were sourced from the GEO 
database. ScRNA-seq data were processed using the “Seurat” package. After cell annotation, necroptosis-related 
scores (NRscores) for each cell were calculated using the “UCell” package. Differentially expressed genes (DEGs) 
and their associated biological functions in NRscore-related cell populations were identified. Additionally, DEGs 
and necroptosis-related genes (DE-NRGs) between MDS patients and healthy controls were identified. Consensus 
clustering was employed to classify MDS patients into distinct subclusters based on DE-NRGs. The biological functions 
and immune characteristics of these classifications were analyzed. Prognostic gene signatures were determined using 
LASSO and SVM-RFE analyses, and a nomogram was constructed based on the prognostic gene signature.

Results A total of 12 cell types were identified in MDS and healthy controls. NRscore was found to be elevated 
in monocytes and common lymphoid precursors (CLPs). Enrichment analysis revealed that monocytes and CLPs 
with high NRscore were associated with mitochondria-related and immune-related pathways. Eleven DEGs in mono-
cytes and CLPs between MDS patients and healthy controls were identified. Additionally, 13 DE-NRGs were identified 
from 951 DEGs between MDS and healthy controls. MDS patients were classified into two distinct subclusters based 
on these 13 DE-NRGs, revealing several immune-related processes and signaling pathways. Differences in immune 
subpopulations between the two subclusters were observed. A necroptosis-related diagnostic gene signature (IRF9, 
PLA2G4A, MLKL, BAX, JAK2, and STAT3) was identified as predictive of MDS prevalence.

Conclusion Necroptosis plays a role in MDS progression by inducing inflammation. A novel necroptotic gene signa-
ture has been developed to distinguish and diagnose MDS at early stages of the disease.
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Introduction
Myelodysplastic syndromes (MDS) are classified as 
myeloid neoplasms and are characterized by clonal pro-
liferation of hematopoietic stem cells, recurrent genetic 
abnormalities, myelodysplasia, disorders of hematopoie-
sis, peripheral cytopenia, and a high risk of progression 
to acute myeloid leukemia (AML) [1]. MDS is tradition-
ally categorized into primary MDS, which occurs with-
out a known history of therapy, and therapy-related 
MDS, which is a serious complication arising from 
chemotherapy [2, 3].

Most MDS cases are associated with structural chro-
mosomal alterations and somatic mutations in hemat-
opoietic stem cells and progenitor cells [1, 4, 5]. Several 
mutation-deriver genes contribute to the pathologi-
cal processes of MDS and account for its heterogeneity 
[6–10]. Bone marrow failure and cytopenia in at least 
one hematological cell line are hallmarks of MDS. The 
revised International Prognostic Scoring System (R-IPSS) 
in 2012, is commonly used to classify MDS patients 
into high-risk and low-risk groups [11]. Current treat-
ment strategies focus on improving the quality of life 
and preventing cytopenia for low-risk MDS while aim-
ing to delay disease progression for high-risk patients 
[12, 13]. Despite the discovery of several promising drugs 
for MDS, the heterogeneity of MDS can complicate 
therapeutic outcomes. Consequently, there is a need to 
identify more sensitive and effective diagnostic and ther-
apeutic markers for MDS.

MDS is complex and heterogeneous myeloid neo-
plasms with mechanisms leading to ineffective hemat-
opoiesis that remain not fully understood. However, 
inflammation and excessive programmed cell death 
(PCD) have been identified in the progression of MDS 
[14]. Two prominent features of MDS include increased 
levels of inflammatory cytokines such as TNF-а, IFN-γ, 
TGF-β, IL-6, and IL-8 [15, 16], and increased inflamma-
tion-related bone marrow cell death [17, 18]. Previous 
studies have shown that hematopoietic cell death plays 
a significant role in the pathological process of low-risk 
MDS [19, 20]. Furthermore, inflammatory cytokines pro-
mote the proliferation and PCD of hematopoietic pro-
genitors in MDS, indicating that immune disorder and 
inflammatory process act as pathogenic drivers of the 
disease [16, 21–23]. However, the immune characteristics 
of the bone marrow in MDS remain unknown.

In recent years, a novel inflammation-related form of 
programmed cell death called necroptosis has been iden-
tified in the context of immune response and autoimmun-
ity. Necroptosis is triggered following the activation of the 
tumor necrosis receptor (TNFR1) by TNFα [24, 25]. This 
activation leads to the formation of a complex involving 
receptor-interacting protein kinase 1 (RIPK1), RIPK3, and 

mixed lineage kinase domain-like protein (MLKL), ulti-
mately inducing necroptosis [26].

Necroptosis has been implicated in myelodysplasia 
and bone marrow failure, contributing to the pathologic 
progression of MDS [27–31]. However, the potential role 
and regulatory mechanism of necroptosis in MDS remain 
unclear.

Single-cell RNA sequencing (scRNA-seq) is a powerful 
strategy used to explore cell heterogeneity and elucidate 
the cellular dynamic processes of human hematopoie-
sis [32]. In the present study, we utilized transcriptomic 
data to explore the cellular landscape and analyze the 
expression of necroptosis-related genes (NRGs) in MDS 
and their related molecular classification. Furthermore, 
we explored the molecular function and immune char-
acteristics of NRGs-related molecular classification and 
assessed the prognosis and predictive values of NRGs in 
MDS using LASSO, SVM-RFE, and nomogram models.

Methods
Data acquisition and processing
The expression profiles and corresponding clinical data 
for MDS patients and healthy controls from bone mar-
row CD34 cells were obtained from the Gene Expres-
sion Omnibus (GEO). The GSE58831 dataset includes 
159 MDS patients and 17 health controls. The GSE19429 
dataset includes 183 MDS patients and 17 health con-
trols. The GSE4619 dataset includes 55 MDS patients and 
11 health controls. All datasets were generated by Affym-
etrix Human Genome U133 Plus 2.0 Array. Additionally, 
scRNA-seq data for 8 MDS patients and 4 health con-
trols were obtained from the GSE135194 datasets, which 
include bone marrow CD34 + hematopoietic stem and 
progenitor cells (HSPCs). The scRNA-seq data were gen-
erated using Illumina HiSeq 3000 (Homo sapiens).

Furthermore, a total of 159 NRGs were obtained 
from the Kyoto Encyclopedia of Genes and Genomes 
(KEGG, https:// www. kegg. jp/ kegg/) using the “KEG-
GREST” package in R.

scRNA‑seq data processing
The Seurat” R package was utilized for the analysis of 
scRNA-seq data. Cells were included in the analysis 
after filtering based on the following criteria: nCount_
RNA > 1,000 and < 50,000, or nFeature_RNA > 1,000 and 
< 5,500, or percent.rb < 80%, or percent. mt < 10%. To 
mitigate the batch effect of sample identification, the 
“Harmony” R package was employed. The FindClusters 
function was applied to stratify all cells into distinct clus-
ters, and cell clusters were annotated using the FindAll-
Markers Function.

https://www.kegg.jp/kegg/


Page 3 of 13Zhang et al. Hereditas          (2024) 161:38  

Calculation of NRscore
The “UCell” R package was performed to calculate 
the necroptosis-related score (NRscore) for each cell. 
Subsequently, cells were classified into high- and low-
NRscore groups based on the median NRscore value. 
The cell populations with significant NRscores were 
selected for further analysis. We identified the DEGs 
between MDS patients and health controls in high-
NRscore cell populations using a threshold of |log2 FC| 
> 0.5. Additionally, we explored the gene ontology (GO) 
enrichment of these cell populations using the “clus-
terprofiler”. A zscore > 0 indicates the activation of the 
pathways in MDS patients compared to health controls.

Screening of NRGs in MDS
The DEGs between MDS and health controls were 
screened using the “Limma” package in R with |log2FC| 
> 0.585 and P-value < 0.05. The differentially expressed 
NRGs (DE-NRGs) were then identified by overlapping 
the DEGs and 159 NRGs.

Consensus clustering analysis
Consensus clustering was performed based on DE-
NRGs using the “ConsensusClusterPlus” package in R 
[33]. The similarity within each group was measured 
by Euclidean distance with 1000 times repetitions. The 
optimal number of clusters (k) was determined using 
the cumulative distribution function (CDF) plot. The 
CDF plot indicated the number of consensuses and the 
stability of clustering, which was further verified using 
principal component analysis (PCA) and T-distributed 
neighbor embedding (T-SNE). Single sample Gene 
Set Enrichment Analysis (ssGSEA) was performed to 
detect the NRscore differences between clusters.

GO and KEGG enrichment analysis
The GO annotation, including biological process, BP; 
molecular function, MF; cellular component, CC, as 
well as KEGG enrichment analysis, were performed 
using the “ClusterProfiler” package in R. The parame-
ters were set as follows: P-value cutoff = 0.05, P adjusted 
Methods = “BH”, and q-value cutoff = 0.2.

Immune cell infiltration analysis
Immune cell infiltration was analyzed using the “Immune-
Oncology-Biological-Research (IOBR)” package in R, 
which integrates MCPcounter, TIMER, EPIC, CIBER-
SORT, xCELL, and ssGSEA methods [34]. The “IOBR” R 
package was used to analyze the differences in infiltrating 
immune cells between two MDS subclusters [35].

Generation and validation of LASSO and SVM‑RFE model 
models for feature gene selection
Two machine-learning algorithms were conducted to 
identify the diagnostic variables in MDS. The least abso-
lute shrinkage and selection operator (LASSO) was per-
formed using the “glmnet” package in R [36]. A support 
vector machine-recursive feature elimination (SVM‐RFE) 
model was developed using a “caret” package in R, incor-
porating 10-fold cross-validations as outlined by Sanz 
et al. [37]. For the SVM-FRE algorithm, the MDS samples 
in the GSE58831 dataset were divided into training and 
test sets in a 3:1 ratio to develop and validate the diagnos-
tic model.

Subsequently, the candidate genes were obtained by 
overlapping the DEGs from scRNA-seq data analy-
sis, and signature both from the LASSO and SVM-RFE 
algorithms. The diagnostic ability of the candidate genes 
was assessed using the receiver operating characteristic 
(ROC) curves, specifically by measuring the area under 
the curve (AUC). Furthermore, validation of the expres-
sion of the overlapping genes was performed using exter-
nal datasets GSE19429 and GSE4619.

Development of a diagnostic nomogram
A diagnostic model was developed using logistic regres-
sion analysis and visualized as a nomogram using the 
“rms” package in R. The calibration curve was drawn to 
evaluate the predictive accuracy. The decision curve was 
drawn using the “ggDCA” package in R to assess whether 
the decisions generated from the model were beneficial 
to the patients.

Results
Identification of the NRscore and relevant enriched 
pathways at the single‑cell level
The analysis processes of this study are shown in the 
workflow in Fig.  1. ScRNA-seq data from the 4 health 
controls (HD1-4) and 8 MDS (PT1-8) were processed. 
After quality control and normalization (Fig.  2A-C), all 
cells were classified into 12 cell populations based on 
the expression of canonical markers and previous stud-
ies (Fig.  2D, E) [32, 38–44], including erythroid cells 
(erythroid_1 and erythroid_2), hematopoietic stem cells 
(HSC_1 and HSC_2), monocytes, common lymphoid 
precursor (CLP), granulocyte-monocyte progenitors 
(GMP), pDC, megakaryocytes, basophileosinophil-mast 
cell progenitor cells (BEM), T/NK (T_NK) cells, and 
unknown population.

The NRscore for each cell population was calculated 
using the “UCell” R package (Fig.  2F), we found mono-
cyte and CLP with the highest NRscore than other cell 
types (Fig.  2G). Additionally, we found the decreased 
abundances of monocytes and CLPs in MDS patients 
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compared with in health control (Fig. 2H). As expected, 
monocytes and CLPs in MDS patients with higher 
NRscore compared with those in health control (Fig. 2I). 
It suggests that decreased abundances of monocytes and 
CLPs in MDS patients are linked to necroptosis.

Therefore, we further explore the molecular function of 
the monocytes and CLPs. A total of 11 DEGs (BAX, FAS, 
IRF9, JAK2, MLKL, PLA2G4A, PPID, STAT1, STAT3, 
TNFRSF1A, and TNFSF10) were identified in the mono-
cytes and CLPs between MDS patients and health con-
trols (Fig. 2J). These DEGs in monocytes were involved in 
mitochondria-related pathways, such as ubiquitin protein 
ligase binding, mitochondrial-protein-containing com-
plex, mitochondrial inner membrane, inner mitochon-
drial membrane protein complex, and ATP metabolic 
process (Fig. 2K). In addition, these DEGs in CLPs were 

involved in the T cell activation and proliferation, posi-
tive regulation of leukocyte activation, leukocyte cell-cell 
adhesion, immune response-regulating signaling path-
way, and endocytic vesicle (Fig. 2L).

Identification of DE‑NRGs in MDS
We also identified the DE-NRGs at the transcriptome level. 
A total of 951 DEGs (299 upregulated and 652 downregu-
lated DEGs) between MDS and health controls were iden-
tified according to |log2FC| > 0.585 and P-value < 0.05 
(Fig.  3A, Table  S1). 13 DE-NRGs (1 upregulated and 12 
downregulated DE-NRGs) were subsequently selected by 
overlapping 951 DEGs and 159 NRGs (Table  S2). 13 DE-
NRGs were shown in Fig.  3B, C, including TNFRSF1A, 
PPID, PLA2G4A, MLKL, IL1A, TNFSF10, FAS, JAK2, 
STAT1, STAT3, IRF9, USP21, BAX.

Fig. 1 Workflow showed the analysis processes in the present study. Pink represents the analysis process based on transcriptome data, and blue 
represents the analysis process based on scRNA-seq data

(See figure on next page.)
Fig. 2 Identification of the NRscore and relevant enriched pathways at the single-cell level. A, B Violin plots show the total molecular (nCount), 
unique gene (nFeature), percentage of ribosomal cells (percent.rb), and the percentage of mitochondrial genes (percent.mt) for each sample 
in the GSE135194 dataset before and after quality control. C UMAP shows the clusters of all samples before and after harmony. D UMAP shows 
the 12 annotated cell populations, including erythroid cells (erythroid_1 and erythroid_2), hematopoietic stem cells (HSC_1 and HSC_2), 
monocytes, common lymphoid precursor (CLP), granulocyte-monocyte progenitors (GMP), pDC, megakaryocytes, basophil eosinophil-mast cell 
progenitor cells (BEM), T/NK (T_NK) cells, and unknown population. E Bubble plot shows the top 4 markers for each cell cluster. F UMAP shows 
the distribution of the cell clusters with NRscores. G Column shows the NRscore for each cell population. H Column shows the cell distributions 
between MDS patients and health controls. I Violin plots of the NRscore between MDS patients and health controls in monocytes and CLPs. 
J Heatmap shows the DEGs between MDS patients and health controls in monocytes and CLPs. K, L Bubble plots show the biological function 
enrichment in monocyte and CLP clusters



Page 5 of 13Zhang et al. Hereditas          (2024) 161:38  

Fig. 2 (See legend on previous page.)
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Development of two distinct necroptosis‑related clusters 
in MDS
Consensus clustering was conducted to classify MDS 
patients into different subclusters based on 13 DE-
NRGs. The CDF plot indicated a slight increase in CDF 
but a sharp decrease in cluster consensus when k was 2 
(Fig. 4A). The change in area under the CDF curve was 

highest when k was 2 (Fig. 4B, C, Figure S1). Thereby, 
159 MDS patients were divided into two molecular 
clusters, 100 patients in cluster 1 and 59 patients in 
cluster 2 (Fig. 4D). The classification results were vali-
dated by PCA and t-SNE (Fig. 4E, F). SsGSEA was used 
to calculate the NRscore of two clusters, resulting in a 
higher NRscore in cluster 2 than in cluster 1 (Fig. 4G).

Fig. 3 Identification of NRGs in MDS. A Volcano plot shows the DEGs between MDS and health controls with |log2FC| > 0.585 
and P-value < 0.05. B Volcano plot shows 13 DE-NRGs between MDS and health controls with |log2FC| > 0.585 and P-value < 0.05  C. Boxplot shows 
13 DE-NRGs between MDS and health controls using the Wilcoxon test
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Functional Enrichment Analysis
We then identified 831 DEGs (754 upregulated and 77 
downregulated) between two subclusters with |log2FC| > 
0.585 and P-value < 0.05 (Table S3). GO and KEGG analy-
ses were performed to explore the potential biological func-
tions and signaling pathways. We found that 942 GO terms, 
including 782 BP terms, 68 CC terms, and 92 MF terms, 
were enriched (Table  S4). The top 10 BP terms included 
several immune-related processes, such as leukocyte migra-
tion/chemotaxis, response to the virus, negative regulation 
of immune system process, positive regulation response to 
external stimulus, cytokine-mediated signaling pathway, 
viral process, response to molecule of bacteria origin, cell 
chemotaxis, and response to lipopolysaccharide (Fig.  5A). 
The top 10 CC terms included endocytic vesicle, collagen-
containing extracellular matrix, secretory granule mem-
brane, secretory granule lumen, cytoplasmic vesicle lumen, 
vesicle lumen, ficolin-1rick granule, endocytic vesicle 
membrane, lysosomal lumen, and endocytic vesicle lumen 
(Fig.  5B). The top 10 MF terms included immune recep-
tor activity, chemokine receptor binding, carboxylic acid 
binding, chemokine activity, monocarboxylic acid binding, 
cargo receptor activity, fatty acid binding, long-chain fatty 
acid binding, pattern recognition receptor activity, lipopol-
ysaccharide-binding (Fig.  5C). Furthermore, 45 significant 

pathways were identified, such as the chemokine signaling 
pathway, phagosome, viral protein interaction with cytokine 
and cytokine receptor, and lysosome (Table S5, Fig. 5D).

The landscape of immune cell infiltration in two 
necroptosis‑related clusters
In the present study, we calculated the difference in 
immune cell infiltration ratio in the two subclusters 
using ssGSEA. We found most of the immune cells were 
decreased in cluster 1 compared with cluster 2, includ-
ing activated dendritic cell (DC), central memory CD8 
T cell, myeloid-derived suppressor cell (MDSC), mono-
cyte, plasmacytoid dendritic cell (DC), regulatory T cell 
(Tregs), T follicular helper cell (Tfh), CD56dim natural 
killer (NK) cell, effector memory CD8 T (TEFF) cell, 
Macrophage, gamma delta T cell, immature B cell, mast 
cell, natural killer cell (NK), CD56bright natural killer 
cell (NK), natural killer T (NKT) cell, neutrophil, and 
activated CD4 T cell (Fig.  6A, B). These findings sug-
gested that higher immune infiltrating in cluster 2 com-
pared with cluster 1.

Generation and validation of the diagnostic NRGs in MDS
To explore whether NRGs could serve as indicators for 
MDS diagnosis, the 13 DE-NRGs were simultaneously 

Fig. 4 Development of two distinct necroptosis-related clusters in MDS. A The cumulative distribution function (CDF) of consensus clustering 
for k from 2 to 5. B The changes in the area under the CDF for k from 2 to 5. C The tracking plot shows the principal component for k from 2 
to 5. D Consensus clustering of 13 DE-NRGs for k = 2. F t-SNE scatter plot shows the clustering results based on 13 DE-NRGs. G Violin plots show 
the NRscore between two clusters
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Fig. 5 Functional enrichment analysis.  A-C Bubble plots show the GO annotation analysis, including top 10 BP, top 10 CC, and top 10 MF 
terms. D Bubble plots show the top 10 KEGG pathway enrichment

Fig. 6 The landscape of immune cell infiltration in two necroptosis-related clusters. A Heatmap shows the differences in infiltrated immune cells 
between two clusters using ssGSEA analysis. B Boxplots show the differences in infiltrated immune cells between two clusters using the Wilcoxon 
test
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identified using LASSO and SVM-RFE algorithms based 
on the expression profiles from the GSE58831 dataset. 
LASSO regression was performed to narrow the NRGs, 
resulting in 7 NRGs (PPID, PLA2G4A, MLKL, JAK2, 
STAT3, IRF9, and BAX) being identified as the candidates 
for MDS diagnosis (Fig. 7A, B). In addition, the samples 
of the GSE58831 dataset were divided into a training set 
for model development (3/4, n = 119) and a test set for 
model validation (1/4, n = 40), SVE-RFE algorithm was 
conducted to select 9 candidates (MLKL, STAT1, IRF9, 
BAX, JAK2, PLA2G4A, STAT3, FAS, TNFSF10) for 
MDS (Fig.  7C). Furthermore, ROC curves were plotted 

to validate the diagnostic model (LASSO and SVM-RFE 
models), indicating that the AUC values of LASSO and 
SVM-RFE models were 0.924 and 0.942, respectively 
(Fig.  7D). The results indicated excellent accuracy both 
in LASSO and SVM-RFE models. Thereby, 6 key candi-
dates, IRF9, PLA2G4A, MLKL, BAX, JAK2, and STAT3, 
were selected as diagnostic markers for MDS based on the 
scRNA-seq data and bulk RNA-freq data (Fig. 7E). Finally, 
we also explored the expression of 6 diagnostic markers 
in external datasets, resulting in IRF9, PLA2G4A, MLKL, 
BAX, and STAT3 significantly increased in MDS com-
pared with healthy controls (Fig. 7F, G).

Fig. 7 Generation and validation of the diagnostic NRGs in MDS. A The distribution plots of the partial likelihood deviation of the LASSO 
coefficients. B The distribution plots of the LASSO coefficients. C SVE-RFE algorithm was used to identify the candidate genes. D ROC curves show 
the performance of LASSO and SVM-RFE models. E Venn plot shows the candidate genes obtained by overlapping the feature genes from two 
machine algorithms and DEGs from the scRNA-seq data analysis. F-G Columns show the expression of IRF9, PLA2G4A, MLKL, BAX, JAK2, and STAT3 
between MDS patients and health controls in GSE19429 and GSE4619 datasets
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Development of a diagnostic nomogram
A diagnostic nomogram model was developed based 
on 6 prognostic markers to predict the prevalence of 
MDS patients (Fig.  8A). Calibration curves indicated 
the accuracy of the prognostic model (Fig.  8B). Moreo-
ver, the DCA curves show the lines of each marker and 
nomogram higher than the rose and pink lines from 0 to 
1, indicating the decisions based on the six prognostic 
biomarkers and prognostic model may benefit the MDS 
patients (Fig. 8C).

Discussion
MDS is a heterogeneous and clonal hematological dis-
order [45]. Owning to the next-generation sequencing 
(NGS) techniques, significant advancements have been 
made in understanding the molecular mechanisms 
involved in the initiation and progression of MDS [46–
52]. NGS is extensively utilized for various applications 
in MDS, including distinguishing MDS from other dis-
eases, classifying subgroups of MDS patients, identify-
ing effective therapeutic targets, providing prognostic 
information, and monitoring disease progression or 
treatment failure [53].

Necroptosis is a prominent model of PCD in the bone 
marrow microenvironment of MDS, leading to inflam-
mation through the release of cellular contents [29]. 

Necroptosis exacerbates both cell death and inflam-
mation within the bone marrow. However, the role 
and molecular mechanisms of necroptosis in patho-
logical processes remain incompletely understood. In 
the present study, we reanalyzed the scRNA-seq data 
to illustrate the characteristics of bone marrow in the 
MDS. We identified 13 distinct cell populations, includ-
ing erythroid_1, erythroid_2, HSC_1, HSC_2, mono-
cytes, CLP, GMP, pDC, megakaryocytes, BEM, T/NK 
(T_NK) cells, and unknown population. Among these 
cells, monocyte and CLP exhibited significant differ-
ences between MDS patients and health controls and 
were involved in several pathways associated with 
mitochondria-related pathways and immune-related 
pathways. Mitochondria plays a central role in linking 
cell death to inflammation [54, 55], underscoring their 
importance in inflammatory processes associated with 
cell death. Interestingly, MDS patients showed a higher 
NRscore than health controls, suggesting that mito-
chondrial-related pathways are involved in the necrop-
tosis of MDS.

Based on the bulk RNA-seq data analysis, 13 DE-NRGs 
were screened out between MDS and health controls, 
including TNFRSF1A, PPID, PLA2G4A, MLKL, IL1A, 
TNFSF10, FAS, JAK2, STAT1, STAT3, IRF9, USP21, BAX. 
Notably, IL1A expression was increased in MDS patients 

Fig. 8 Development of a diagnostic nomogram. A Nomogram model for MDS predicting based on the six diagnostic markers. B Calibration curve 
estimated the predictive ability of the nomogram model. C Decision curves based on the nomogram model assessed the benefit of MDS patients
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compared to health controls, while TNFRSF1A, PPID, 
PLA2G4A, MLKL, TNFSF10, FAS, JAK2, STAT1, STAT3, 
IRF9, USP21, and BAX expression levels were decreased. 
Based on those NRGs, 159 MDS patients were divided 
into two clusters. The classification was validated by PCA 
and t-SNE. SsGSEA revealed a higher NRscore in cluster 
2 compared to cluster 1. Functional analyses of the DEGs 
between two subclusters revealed enrichment in sev-
eral immune-related biological processes and functions. 
For example, leukocyte migration/chemotaxis, negative 
regulation of immune system process, positive regulation 
response to external stimulus, cytokine-mediated signaling 
pathway, response to molecule of bacteria origin, cell chem-
otaxis, and response to lipopolysaccharide. Besides, several 
signaling pathways were enriched, including the chemokine 
signaling pathway, phagosome, viral protein interaction 
with cytokine and cytokine receptor, and lysosome.

Previous research highlights the key role of leukocyte 
migration or chemotaxis in the surveillance in MDS 
surveillance, with reduced leukocyte migration indicat-
ing high-risk MDS [56]. Over the past decade, studies 
have shown that the deregulation of innate immune and 
inflammatory signaling drives MDS pathogenesis by acti-
vating bone marrow hematopoietic stem cells and pro-
genitor cells, as well as affecting other immune system 
cells and the bone marrow microenvironment [57, 58]. 
We speculated that the process of necroptosis exacer-
bates bone marrow inflammation by inducing abnormal 
immune cell population dynamics.

We further investigated the landscape of immune 
cell infiltration in two subclusters. The results showed 
that activated DC, central memory CD8 T cell, MDSC, 
monocyte, plasmacytoid DC, Tregs, Tfh, CD56dim 
NK cell, TEFF cell, Macrophage, gamma delta T cell, 
immature B cell, mast cell, NK, CD56bright NK cell, 
NKT cell, neutrophil, and activated CD4 T cell were 
decreased in cluster 1 compared to cluster 2. The 
higher NRscore and decreased immune cell infiltration 
were observed in cluster 1, indicating MDS patients 
in cluster 1 were linked to necroptosis. Previous study 
reveals that disorders of immune populations drive 
abnormal clonal cells to escape immune surveillance 
in MDS [59]. For example, NK cell is a key population 
in innate immunity with heterogeneity and contribute 
against malignant cells [60, 61]. It has been found that 
decreased mature NK cells are associated with poor 
survival in MDS [62]. Consistent with it, the signifi-
cantly reduced NK cells (D56dim NK cells, CD56bright 
NK cells, NK cells, and NKT cells) in cluster 1 showed 
a poor prognosis. Furthermore, the disorder of immune 
response contributes to bone marrow insufficiency and 
disease progression in MDS [63]. Previous studies have 
found that higher counts of cytotoxic T cells and lower 

counts of Tregs relate to low-risk MDS [64, 65]. MDSC 
functions as an inflammatory and immunosuppressive 
effector cell. MDSC are markedly expanded in the bone 
marrow to reduce T cell proliferation and function in 
MDS [59]. Here, the decreased immune cell popula-
tions in cluster 1 might link to immune escapes.

Finally, a necroptosis-related diagnostic gene signa-
ture (IRF9, PLA2G4A, MLKL, BAX, JAK2, and STAT3) 
was identified, and these models showed good per-
formance both in training and validation sets. Subse-
quently, a nomogram model was developed based on 
IRF9, PLA2G4A, MLKL, BAX, JAK2, and STAT3 to pre-
dict the prevalence of MDS patients and the decisions 
benefited the MDS. Several studies have indicated IRF9 
plays an important role in inflammation [66], we first 
found the key role of IRF9 in MDS. PLA2G4A also is an 
inflammation-related gene, a previous study indicates 
that high PLA2G4A expression is associated with poor 
overall survival of MDS patients [67]. Several studies 
have demonstrated that upregulated MLKL expression 
in MDS may be associated with necrosis of the MDS cell 
line [30, 68]. Previous study reveals that BAX expression 
relates to high-risk MDS [69]. JAK-STAT activating is a 
specific phenotype in MDS, against JAK-STAT signal-
ing that can inhibit inflammatory cytokines and myelo-
proliferative [70, 71]. Our findings are consistent with 
previous research, that high IRF9, PLA2G4A, MLKL, 
BAX, JAK2, and STAT3 expression in MDS compared 
to health controls and is associated with poor prognosis.

Conclusion
In conclusion, we identified a necroptosis-associated 
diagnostic signature for MDS by integrating scRNA-
seq and bulk RNA-seq data. This study elucidates the 
regulatory mechanisms of NRGs in MDS, highlights 
primary cell populations affected by necroptosis, and 
demonstrates that MDS patients with high NRscores 
exhibit poor prognosis. These findings suggest that tar-
geting necroptosis could represent a novel therapeutic 
strategy for MDS. Our results provide potential bio-
markers for the diagnosis and treatment of MDS.
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