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Abstract 

Background The novel form of regulatory cell death, cuproptosis, is characterized by proteotoxicity, which ultimately 
leads to cell death. Its targeting has emerged as a promising therapeutic approach for oral squamous cell carcinoma 
(OSCC). Long noncoding RNAs (lncRNAs) participate in epigenetic regulation and have been linked to the progres-
sion, prognosis, and treatment of OSCC. Thus, this study aimed to identify new cuproptosis-related lncRNAs (CRLs), 
establish predictive models for clinical prognosis, immune response, and drug sensitivity, and provide novel insights 
into immune escape and tumor drug resistance.

Methods The present study screened eight CRLs (THAP9-AS1, STARD4-AS1, WDFY3-AS2, LINC00847, CDKN2A-
DT, AL132800.1, GCC2-AS1, AC005746.1) using Lasso Cox regression analysis to develop an eight-CRL prognostic 
model. Patients were categorized into high- and low-risk groups using risk scores. To evaluate the predictive ability 
of the model, Kaplan-Meier analysis, ROC curves, and nomograms were employed. Furthermore, the study investi-
gated the differences in immune function and anticancer drug sensitivity between the high- and low-risk groups. To 
validate the expression of CRLs in the model, OSCC cell lines were subjected to quantitative real-time fluorescence 
PCR (qRT-PCR).

Results The results of the study showed that the high-risk group had a shorter overall survival (OS) time in OSCC 
patients. Cox regression analysis demonstrated that the high-risk score was an independent risk factor for a poor 
prognosis. The validity of the model was confirmed using ROC curve analysis, and a nomogram was developed 
to predict the prognosis of OSCC patients. Furthermore, patients in the high-risk group with high TMB had a poorer 
prognosis. Patients in the low-risk group responded better to immunotherapy than those in the high-risk group. 
Additionally, the risk scores were significantly associated with drug sensitivity in OSCC patients. Finally, the findings 
of qRT-PCR supported the reliability of the proposed risk model.
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Conclusion The study identified and established the 8-CRL model, which represents a novel pathway of lncRNA 
regulation of cuproptosis in OSCC. This model provides guidance for the prognosis and treatment of OSCC and offers 
a new insight into immune escape and tumor drug resistance.

Keywords Cuproptosis, lncRNA, Oral squamous cell carcinoma, Prognostic model, Biomarkers, Immune response, 
Drug sensitivity

Background
 As a malignant tumor, oral squamous cell carcinoma 
(OSCC) specifically occurs in the oral cavity and is 
among the most malignant tumors of the head and neck, 
with more than 50% of head and neck squamous cell 
carcinoma (HNSCC) being OSCC [1]. In 2020, world-
wide, OSCC will account for 177,757 deaths (1.8% of all 
cancers) and 377,713 new cases (2% of all cancers) [2]. 
Although great progress has been made in immuno-
therapy and targeted therapy recently, it is often difficult 
to achieve satisfactory results with anti-tumor drugs in 
the treatment of OSCC due to the acquisition of tumor 
resistance [3]. One of the major challenges in the treat-
ment of OSCC today is drug resistance due to the escape 
of OSCC cells from the regulated cell death (RCD) path-
way, and the discovery of a novel RCD process -cuprop-
tosis is expected to overcome this resistance mechanism 
[4]. Therefore, it is vital to determine the molecular 
mechanisms related to cuproptosis and OSCC occur-
rence and progression, explore new ideas for OSCC drug 
resistance, and detect novel prognostic risk models that 
can be effectively and reliably applied to manage this type 
of cancer.

As an essential trace metal, copper makes an important 
impact on human life activities [5]. Regulation of RCD 
is known to be critical in identifying cell fate, whereas 
the mechanism of cytotoxicity and cell death triggered 
by excessive copper exposure has not been fully eluci-
dated. In recent years, Tsvetkov et  al. demonstrated for 
the first time in the study of Science that there is a cop-
per-dependent and regulated cell death in human cells, 
a novel RCD mode that relies on mitochondrial respira-
tion but shows difference from known mechanisms of 
regulated cell death (containing apoptosis, necroptosis, 
pyroptosis, ferroptosis, etc.)and named this novel cop-
per-dependent cell death mode as “cuproptosis“ [6]. In 
this process, copper ions directly bind to the fatty acyl 
components in the tricarboxylic acid cycle pathway. This 
contributes to abnormal aggregation of fatty acyl proteins 
and loss of iron-sulfur cluster proteins, which induces 
proteotoxic stress and finally results in cell death. Cop-
per accumulation is engaged in vital characteristics of 
cancer progression, containing proliferation, metastasis, 
and angiogenesis [7]. It has been indicated that higher 
levels of copper are related to malignancies compared 

to normal tissues, such as breast cancer [8] and oral 
cancer [9]. It has been previously confirmed that serum 
copper levels are notably higher in oral cancer patients 
than in healthy controls and that excess copper in serum 
shows an association with oral cancer risk [9]. The cop-
per-enriched nature of tumor tissues is emerging as an 
attractive target for developing anticancer drugs. More-
over, cuproptosis offers novel ideas for treating multiple 
tumors, especially in the area of tumor drug resistance. 
We need to study the biomarkers of cuproptosis in OSCC 
further to offer a novel direction for treating OSCC.

With the continuous development and advancement of 
bioinformatics and genomics, a class of long non-coding 
RNAs (LncRNAs) with the length of over 200 nucleotides 
is aberrantly expressed in OSCC [10]. LncRNAs affect 
the biological processes of OSCC cells, like proliferation, 
migration, and invasion, by participating in epigenetic 
regulation and post-transcriptional modifications. Exist-
ing research has indicated that lncRNAs are engaged in 
diverse biological processes in cancer, including epige-
netic regulation, metabolic disorders, chemoresistance, 
and immune escape [11]. More and more scholars have 
reported that lncRNAs act as prognostic biomarkers or 
potential targets for targeted therapies and are involved 
in the progression of OSCC [12–14]. Many studies from 
the direction of lncRNA regulation as a therapeutic and 
prognostic point for OSCC in clinical first-line radio-
therapy regimens to improve tumor resistance to drugs 
to enhance treatment outcomes. Additionally, lncR-
NAs make a vital role in copper metabolism as epige-
netic regulators, and thus they can be used to help study 
tumor progression. Given the importance of lncRNAs 
in cuproptosis, new methods to predict the prognosis of 
OSCC patients become possible. Nevertheless, cupropto-
sis-related lncRNAs (CRLs) in OSCC have not been sys-
tematically investigated. Therefore, exploring potential 
targets of cuproptosis mechanisms in OSCC and explain-
ing key CRLs with prognostic significance in OSCC 
patients deserve future investigation which is important 
for the study of OSCC mechanisms as well as prognosis 
and clinical treatment. Herein, through bioinformatics 
analysis and experimental validation, the present study 
attempted to build a cuproptosis-related lncRNA predic-
tion model in order to determine the prognosis, immune 
response, as well as targeted drug sensitivity in OSCC.
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Results
Identification of Cuproptosis‑Related LncRNAs (CRLs) 
in OSCC
Figure 1 displays the workflow. This study retrieved tran-
scriptome RNA-Seq data from 373 TCGA-OSCC cases, 
including 341 OSCC tissues and 32 nearby normal tis-
sues, with pertinent clinical information. The present 
study included samples with adequate clinical data for 
further analysis. There were 16,876 lncRNA detected 
from the TCGA-OSCC gene expression file based on the 
GTF annotation file for human signatures. The expres-
sion data of 19 cuprotosis-relevant genes (CRGs) in 
OSCC samples were also retrieved from TCGA data-
base. Pearson’s correlation analysis yielded 781 lncRNAs 
cuproptosis-related lncRNAs with significant correla-
tion (R > 0.4, p < 0.001). The Sankey diagram reveals the 
degree of connection between the 19 cuproptosis-related 
mRNAs and 781 lncRNAs (Fig.  2A). With the aim of 
examining the prognostic ability of these CRLs, this study 
classified the TCGA-OSCC data (n = 316) into a train-
ing group (n = 158) and a test group (n = 158) randomly. 
Clearly, the clinical features containing age, gender, and 
TNM stage tended to present no statistically significant 
difference (Table  1, P > 0.05), indicating no bias in sam-
ple grouping. To identify lncRNAs with prognostic sig-
nificance, single-factor Cox analysis was adopted for 
detecting 14 CRls (|cor|>0.4 and P < 0.001) (Fig. 2B). Sub-
sequently, LASSO regression analysis detected 11 CRLs 

(Fig. 2C.D). Multifactor Cox analysis further determined 
8 CRLs with prognostic significance. Figure 2E indicates 
the co-expression correlation between these 8 CRLs and 
the 19 CRGs.

Construction of risk model for CRLs
To assess the prognostic risk of OSCC patients, a risk 
model was established with eight cuproptosis-related 
lncRNAs. Each OSCC patient in the TCGA database 
was set a risk score based on the formula: Risk score =  
THAP9-AS1 × 0.285166029638806 + STARD4-AS1 × (-1.0021 
836589916) + W DFY 3-A S 2  ×  1.0 715 8 530 871 364 + 
 LINC00847 × 0.723466955195127 + CDKN2A-DT × ( -1. 017 5 
54 738 96558) + AL132800.1 × 0.382836439019932 + GCC2-
AS1 × 0.492465300792503 + AC005746.1 × (-3.6846558879 
6498). Through the median risk value, we categorized 
OSCC samples into high-risk and low-risk groups. 
Next, the present study assessed the prognostic value 
of the 8-CRL model. All three analyses in the train-
ing, test, and overall group (Fig.  3A-L) obtained the 
same trend findings. The K-M curve revealed that 
the survival rate of the low-risk group was nota-
bly higher than that of the high-risk group (training 
group: P < 0.001; test group: P = 0.019; overall group: 
P < 0.001). According to the risk score curve and scat-
ter plot of survival status (blue dots indicate sur-
vival and red dots suggest death), with the increased 
risk, the sample mortality rate significantly elevated, 

Fig. 1 Workflow of cuproptosis-related lncRNA prognostic model establishment and verification
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and most deaths were concentrated in the high-
risk population. The risk heat map showed five risk 
lncRNAs (THAP9-AS1, WDFY3-AS2, LINC00847, 
AL132800.1, and GCC2-AS1) presented notable up-
regulation in the high-risk subgroup, while three pro-
tective lncRNAs (STARD4-AS1, CDKN2A-DT, and 
AC005746.1) presented significant down-regulation 
(Figure 10 in Appendix). All these suggested that the 
8-CRL model has a good predictive ability. By con-
trast, the mortality rate of the high-risk group was 
shown to be higher. We investigated the correlation 
between the predictive parameters of OSCC patients 
and OS, as well as classified according to various clin-
ical and pathological characteristics containing age, 
gender, grading, and staging. By contrast, patients in 
the high-risk group revealed notably shorter OS in 
all key clinical features (Fig.  4). This indicates that 
our model is suitable for early and late-stage OSCC 
patients and patients of different genders and stag-
ing. The 8-CRL model serves as a valuable prognostic 
model for OSCC.

Validation of the accuracy of the prognostic risk model 
for CRLs
To explore whether the 8-CRL model is an independent 
prognostic predictor for OSCC patients, Cox regres-
sion analysis was employed. Using Univariate Cox 
regression analysis, age, stage, and risk score showed 
relationship to OSCC prognosis (P < 0.001) (Fig.  5A). 
Based on multivariate Cox regression analysis, age, 
stage, and risk score were independent prognostic indi-
cators for OSCC (P < 0.001) (Fig.  5B), and the findings 
suggest that the constructed model can be applied as an 
independent prognostic factor to differentiate from the 
effects of other clinical characteristics. For the purpose 
of evaluating the accuracy and specificity of the risk 
score, we adopted the area under the ROC curve(AUC). 
Besides, the 1, 3, and 5-year AUCs for all samples were 
separately 0.688, 0.675, and 0.697 (Fig. 5C). Compared 
with the AUCs of age, sex, tumor grade, and clinical 
stage in the ROC curve, the risk score AUC remained 
the highest (Fig.  5D), indicating higher predictive effi-
ciency. As time passed, the C-index of the risk score 

Fig. 2 The detection of cuproptosis-related lncRNAs in individuals with OSCC. A Sankey diagram representing the relation between 19 
cuproptosis-related genes and lncRNAs related to cuproptosis. B To screen CRLs in relationship to clinical prognosis, univariate Cox regression 
analysis was employed. C, D Following the LASSO analysis to select the optimal value of the penalty λ. E Heatmap shows co-expression analysis 
of 8 prognostic CRLs and 19 CRGs. Besides, the level of the association is shown in the color of each unit. *P < 0.05, **P < 0.01, ***P < 0.001. CRG  
Cuproptosis-related gene, LASSO Least absolute shrinkage and selection operator, CRL Cuproptosis-related lncRNA
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was always higher than that of other clinical compo-
nents (Fig.  5E). It is demonstrated that the prognosis 
of cuproptosis-related lncRNA has a better predictive 
ability than other clinical and pathological features. A 
Nomogram was developed with age, sex, grade, stage, 
and risk score factors, aiming to predict the survival 
rates of OSCC patients at 1, 3, and 5 years. When the 
patient is female, 50 years old, in the low-risk group, 
stage IV, with T4, N3, and grade G2, the total score 
calculated according to the corresponding points in 
the line graph is 659, corresponding to a 5-year sur-
vival rate of 0.576, a 3-year survival rate of 0.653, and 
a 1-year survival rate of 0.866 (Fig.  5F). In addition, 
the calibration plots for 1, 3, and 5 years are close to 
the gray solid line, suggesting good predictive ability 
(Fig.  5G). The K-M survival curve demonstrated that 
the progression-free survival(PFS)of OSCC patients in 

the low-risk group was notably better (Fig.  5H), sug-
gesting that the model is capable of effectively distin-
guishing high-and low-risk groups. Then, PCA analysis 
was performed with the entire gene sequencing data of 
the TCGA-OSCC cohort, 19 cuproptosis-related genes, 
781 cuproptosis-related lncRNAs and 8-CRL risk prog-
nostic model (Fig.  5I-L). In addition, the significant 
and stable differences in distributing the two groups 
on the basis of the risk model fully suggested that the 
risk model is capable of efficiently finding high-risk 
patients, proving the model’s accuracy.

Functional enrichment analysis based on risk model
In this study, a total of 139 differentially expressed genes 
(DEGs) were identified between high-risk and low-risk 
groups by differential expression analysis (Supplement 
Table S1). Next, KEGG and GO enrichment analysis 
of these DEGs were performed to explore the poten-
tial biological function differences in the prognosis dif-
ference of OSCC patients in different risk groups. GO 
analysis suggested that DEGs were notably enriched in 
biological processes (BP), covering skin development, 
epidermal development, epidermal cell differentiation, 
keratinocyte differentiation, and keratinizing ability. 
Concerning cellular components (CC), the DEGs were 
notably enriched in the intermediate filament cytoskel-
eton, intermediate filament fibers, keratin filaments, 
and keratinizing envelope. Concerning molecular func-
tion (MF), these DEGs were significantly enriched in 
signaling receptor activator activity, receptor ligand 
activity, peptidase regulatory activity, and serine-type 
endopeptidase inhibitor (Fig.  6A, B, D). KEGG results 
suggest that these DEGs may be associated with neuro-
active ligand-receptor interactions, leukocyte transen-
dothelial migration, and sphingolipid metabolism 
(Fig. 6E, F), suggesting that activation of these pathways 
may increase the risk of death in patients. The circu-
lar graphs indicate the number of genes, the number 
of enrichments, and the gene ratios in GO and KEGG 
enrichment analysis (Fig. 6C, G).

Comparison of immune function and TIDE score 
between high and low‑risk groups
With the aim of exploring the immune status of the low 
and high-risk groups, immune-related functions were 
analyzed. Clearly, the findings revealed differences in 
type-II-IFN-response and chemokine receptor expres-
sion (CCR) (Fig.  7A). We obtained TIDE scores and 
scores for CAF, IFNG, CD8, CD274 (PD-L1), MDSC, 
T-cell dysfunction, Merck18, TAM M2, and T-cell exclu-
sion from the TIDE website. The TIDE score was higher 
in the high-risk group, implying more obvious tumor 

Table 1 The clinical features of individuals with OSCC on the 
basis of the TCGA database

Covariates Type Entire Testing Training P value

Age  < = 65 200(63.29%) 105(66.46%) 95(60.13%) 0.2935

 > 65 116(36.71%) 53(33.54%) 63(39.87%)

Gender FEMALE 95(30.06%) 48(30.38%) 47(29.75%) 1

MALE 221(69.94%) 110(69.62%) 111(70.25%)

Grade G1 49(15.51%) 27(17.09%) 22(13.92%) 0.8556

G2 195(61.71%) 94(59.49%) 101(63.92%)

G3 63(19.94%) 32(20.25%) 31(19.62%)

G4 2(0.63%) 1(0.63%) 1(0.63%)

unknow 7(2.22%) 4(2.53%) 3(1.9%)

Stage Stage I 20(6.33%) 10(6.33%) 10(6.33%) 0.6784

Stage II 53(16.77%) 31(19.62%) 22(13.92%)

Stage III 55(17.41%) 27(17.09%) 28(17.72%)

Stage IV 153(48.42%) 75(47.47%) 78(49.37%)

unknow 35(11.08%) 15(9.49%) 20(12.66%)

T T0 1(0.32%) 1(0.63%) 0(0%) 0.435

T1 32(10.13%) 19(12.03%) 13(8.23%)

T2 99(31.33%) 52(32.91%) 47(29.75%)

T3 57(18.04%) 24(15.19%) 33(20.89%)

T4 100(31.65%) 52(32.91%) 48(30.38%)

unknow 27(8.54%) 10(6.33%) 17(10.76%)

M M0 114(36.08%) 57(36.08%) 57(36.08%) 1

unknow 202(63.92%) 101(63.92%) 101(63.92%)

N N0 116(36.71%) 68(43.04%) 48(30.38%) 0.2366

N1 46(14.56%) 23(14.56%) 23(14.56%)

N2 97(30.7%) 44(27.85%) 53(33.54%)

N3 3(0.95%) 1(0.63%) 2(1.27%)

unknow 54(17.09%) 22(13.92%) 32(20.25%)
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immune escape and poor response to immune therapy in 
the high-risk group (Fig. 7B). The present work explored 
the distribution of these scores between the risk groups in 
more detail and found that the CAF, T-cell Dysfunction, 
and MDSC scores were higher in the high-risk group, 
whereas the TAM M2 and T-cell exclusion scores were 
shown to be higher in the low-risk group (Fig. 7C-K).

Tumor Mutation Burden (TMB) analysis through risk model 
comparison
Firstly, the difference in tumor mutation burden (TMB) 
between the two groups of patients was evaluated. The 
top 15 genes which had the highest mutation frequencies 
are displayed in Fig. 8A and B. The waterfall plot reveals 
that the top 3 mutated genes in OSCC samples are TP53, 
TTN, and FAT1. Comparatively, the mutation frequency 
of most genes in the high-risk group is higher. To study 
the prognostic value of TMB, OSCC samples were clas-
sified into high and low TMB subgroups in line with the 
median TMB score. In addition, survival analysis was also 
conducted in this study. The median survival time (MST) 
of the high TMB subgroup was notably higher in relative 
to that of the low TMB subgroup (P = 2.22 e-0.6, Fig. 8C). 

Thus, the risk model based on 8-CRl relates to TMB. Joint 
survival analysis of TMB and risk score revealed that the 
MST difference among the four groups showed statistical 
significance(P < 0.001, Fig. 8D.E). We noticed that the low 
TMB + low-risk group exhibited the best prognosis. In 
contrast, the high TMB + high-risk group exhibited the 
worst prognosis, highlighting the significant synergistic 
effect between these two indicators.

Screening of potential drugs for OSCC based on the 8‑CRL 
model
OSCC has relatively poor sensitivity to various anti-
tumor drugs, which limits its widespread application. 
Given the notable differences in prognosis between the 
two groups of OSCC patients, we determined to further 
screen potential drugs, aiming to obtain targeted therapy 
better. By contrasting the IC50 values of some commonly 
seen drugs in different risk populations, it could be found 
that, to some extent, the risk score of OSCC patients can 
affect their sensitivity to drugs. The IC50 values of 16 
potential drugs, containing Gemcitabine and Sorafenib, 
were notably lower in the high-risk group (Fig.  9A-P), 
implying that they may be candidates for high-risk group 

Fig. 3 Establishment of risk models for 8 lncRNAs related to cuproptosis in OSCC. A-C Survival analysis of low and high-risk groups in the training, 
test, and overall group. D-F Risk score curves. G-I Scatter plots of survival status. J-L Heatmap of the levels of 8 lncRNAs
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OSCC patients. Comparatively, the IC50 values of four 
potential drugs, erlotinib and lapatinib, were significantly 
down-regulated in the low-risk group (Fig.  9Q-T), sug-
gesting that low-risk OSCC patients may be more sen-
sitive to these four drugs. Detailed descriptions of the 
drugs are shown in Table 2.

Validation of 8‑CRL expression levels in OSCC
To further explore the expression of CRL, RT-qPCR anal-
ysis demonstrated that compared with human normal 
oral keratinocyte cells (HOK), the expression levels of 
GCC2-AS1, THAP9-AS1, LINC00847, and WDFY3-AS2 
were upregulated, and AC005746.1 presented downregu-
lation in OSCC cell lines (Cal27 and SCC25). These lncR-
NAs levels conformed to the findings of bioinformatics 
analysis. Nevertheless, STARD4-AS1 and CDKN2A-
DT were highly expressed in OSCC cell lines. RT-qPCR 
detection of CRL expression provided some experimental 
evidence, although it did not completely conform to the 
results of bioinformatics analysis. Overall, 8-CRL may 

make a vital impact on the occurrence and progression 
of OSCC.

Discussion
The pathogenesis of OSCC closely relates to immu-
nosuppression and escape, with cancer cells evading 
immune surveillance and antitumor immune responses 
through immunosuppressive cytokine accumulation, 
impaired cellular activity and T-cell depletion [15]. The 
importance of copper in immune infiltration has also 
been reflected in some recent correlation studies. TAN 
found that the copper chelating agent on macrophages 
could eliminate the presentation of PD-L1 mediated by 
lysyl oxidase-like 4(loxl4), thus inhibiting the immune 
escape of cells [16]. Inducing cuproptosis in can-
cer cells activates the ability of immune cells and can 
be used as a strategy to enhance immunotherapeutic 
activity. Numerous studies have confirmed that lncR-
NAs, as epigenetic factors, can regulate cuproptosis, 
and lncRNAs make a vital impact on the occurrence, 

Fig. 4 Survival curves for model validation. The prognostic model can be adopted for different clinical subgroups of OSCC: A, B Age (≤/>65 years). 
C, D Gender (female/male). E, F Clinical stage (I-II/III-IV). G, H, I Pathological grade (1, 2, 3), P < 0.05
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Fig. 6 GO and KEGG analysis. A Bubble plot. B, D Bar plot. C Circular plot, biological process (BP), cellular component (CC), and molecular function 
(MF) of DEGs obtained from GO analysis between the two groups. E Bubble plot. F Bar plot. G Circular plot, DEGs were obtained from KEGG analysis 
between the two groups. DEG: differentially expressed gene; GO: gene ontology; KEGG: Kyoto Encyclopedia of Genes and Genomes

Fig. 5 The validation of the accuracy of the Prognostic Risk Model. A, B Univariate/multivariate Cox analysis of risk score and clinical factors. 
C Time-dependent ROC curve AUC for survival prediction using risk score. D Comparison of AUC of ROC curves for prognostic accuracy 
between risk score and the clinical characteristics. E C-index curve comparison of prognostic accuracy between risk score and clinical factors. 
F The establishment of nomogram for determining the survival of OSCC individuals. G Calibration curves corresponding to column line plots 
were adopted to determine the concordance between 1-, 3-, and 5-year OS. H Kaplan–Meier curves displaying the progression-free survival. PCA 
between low- and high-risk populations (I) All gene set. J Cuproptosis gene set. K CR LncRNAs set. L 8-CRL prognostic model set. ROC Subject 
working characteristic curve, PCA Principal component analysis, AUC  Area under the curve
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development, and immune escape of OSCC [17]. 
With the emergence of some new lncRNA target-
ing technologies combined with immune checkpoint 
therapy, they offer a novel strategy for treating OSCC. 
However, up to now, only a few studies have studied 

cuproptosis-related lncRNAs in HNSCC. Given the par-
ticularity of OSCC, it is essential to study the association 
between survival prognosis and risk of cuproptosis-
related lncRNAs in OSCC.

Fig. 7 Immune function analysis for evaluating immune status in both risk groups. A Heat map representing immune function distribution. B 
TIDE score. C CAF score. D CD8 score. E CD274 score. F IFNG score. G MDSC score. H Merck18. I TAM M2 score. J Dysfunction. K Exclusion. *P < 0.05, 
**P < 0.01 and ***P < 0.001. CAF Cancer-associated fibroblast, CD Cluster of differentiation, IFNG Interferon-gamma, MDSC Myeloid-derived 
suppressor cell, TAM Tumor-associated macrophages, TIDE Tumor immune dysfunction and exclusion
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With univariate Cox analysis, LASSO regression, and 
multivariate Cox analysis, totally 8 lncRNAs related to 
cuproptosis (THAP9-AS1, STARD4-AS1, WDFY3-AS2, 
LINC00847, CDKN2A-DT, Al132800.1, GCC2-AS1, 
and AC005746.1) were found to build the risk prognosis 
model. In the subsequent research analysis, the supe-
rior predictive power of the risk model is verified. In the 
8-CRLs studied, THAP9-AS1, CDKN2A-DT, GCC2-
AS1, AL132800.1, STARD4 − AS1, and WDFY3-AS2 
were reported to be biomarkers related with cuproptosis 
in HNSCC [18–23]. LINC00847 is engaged in the regu-
lation of pyroptosis in the occurrence and development 
of OSCC [24]. In addition, WDFY3-AS2 has been found 
to make an important impact on diverse cancers by regu-
lating ferroptosis [25]. Silencing WDFY3-AS2 notably 
hinders the proliferation, migration and invasion of oral 
squamous cells but accelerates cell apoptosis and can be 
applied to be a new therapeutic target and prognostic 

factor for oral squamous cell carcinoma [26]. Apparently, 
these lncRNAs are involved in diverse regulatory cell 
death pathways, containing cuproptosis, pyroptosis, fer-
roptosis, and apoptosis, suggesting that different kinds of 
regulated cell death can be viewed to be a single, coor-
dinated cell death system where the pathways are greatly 
interconnected and can make flexible compensation for 
each other. 8-CRL markers provide new targets for future 
mechanistic studies.

With the use of the median risk score, this study clas-
sified OSCC patients into a high-risk group and a low-
risk group to demonstrate the predictive power of the 
model. The findings of risk analysis, survival analy-
sis, and 1, 3, and 5-year time-dependent ROC analysis 
between the two risk groups well showed the validity of 
the 8-CRL model prediction. Univariate and multivari-
ate Cox regression analyses verified that risk score was an 
independent prognostic factor for OSCC patients in the 

Fig. 8 TMB analysis through risk model comparison. Waterfall plots of death-related gene mutations in a high-risk group (A) and low-risk group (B) 
of OSCC patients. C Violin plot of the difference in TMB. D Kaplan-Meier curves of OS for high TMB and low TMB subgroups. E Kaplan-Meier curves 
of OS for TMB + risk. KM Kaplan-Meier, OS Overall survival, TMB Tumor mutational burden



Page 11 of 17Liang et al. Hereditas          (2024) 161:10  

training, test, and overall group. In addition, we further 
combined the model with independent prognostic fac-
tors (sex, age, grading, and staging) to form a nomogram 
with better predictive power for overall survival, suggest-
ing that the prediction using the 8-CRL model was more 
accurate. We adopted GO and KEGG enrichment analy-
sis for investigating the mechanisms related to the risk 
model. It was shown that DEGs were mainly enriched in 
pathways related to leukocyte transendothelial migration 
and sphingolipid metabolism, suggesting that 8-CRL may 
regulate OSCC progression by affecting immune infiltra-
tion levels and metabolism. It is suggested that copper 

imbalance can affect mitochondrial respiration and lead 
to metabolic changes inducing RCD and copper-depend-
ent cell death [27], providing clues for the toxic damage 
related to copper metabolic dysfunction and the potential 
use of anti-OSCC.

Immune checkpoint inhibitors (ICIs) have opened a 
revolutionary era in cancer immunotherapy and play a 
crucial role in immune escape surveillance [28, 29]. It is 
well known that the TIDE algorithm is adopted for evalu-
ating the clinical response to ICI therapy. A higher TIDE 
score indicates a greater likelihood of immune escape, 
implying a restricted response and shorter survival time 

Fig. 9 Drug sensitivity analysis using the 8-CRL prognostic model in OSCC
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for patients subjected to treatment with ICI. In the pre-
sent study, TIDE scores were higher in the high-risk 
group, whereas no obvious differences were observed 
in CD274 (PD-L1) scores. However, higher TIDE scores 
were found to be linked to lower responsiveness to anti-
PD-1 therapy [30]. PD-L1 expression levels, degree of 
immune cell infiltration, and tumor mutational burden 
(TMB) are predictors of OSCC immunotherapy efficacy. 
TMB, which is the total number of somatic mutations 
per megabase (Mb) in the tumor genome, relates to the 
emergence of neoantigens triggering tumor immunity 
[31]. Recent studies have indicated that individuals with 
high TMB are more probably to produce potent biomark-
ers of anti-PD-1/PD-L1 therapeutic response when being 
subjected to treatment with ICIs [32]. In cancers such as 
HNSCC and Bladder cancer, lower TMB had longer OS 
[33, 34]. Interestingly, combining TMB with risk score 
in our study revealed the worst prognosis in the high 
TMB + high risk group and the best prognosis in the low 
TMB + low risk group. Therefore, risk score, TIDE, and 
TMB score can be used jointly to achieve more accurate 
and higher predictive performance in the future. In the 
gene mutational differential analysis, we identified the 

tumor suppressor TP53 gene as the most mutated gene, 
a finding consistent with recent evidence from genome 
sequencing analysis [35, 36]. Multiple studies have shown 
that the polymorphism of the TP53 gene can increase 
the susceptibility to oral cancer and may be one of the 
risk factors for oral cancer [37, 38]. This indicates that 
TP53 may become a novel therapeutic target for OSCC 
patients.

There is evidence that although chemotherapy is exten-
sively applied in the clinical treatment of OSCC and rap-
idly inhibits its deterioration, the development of tumor 
drug resistance is often the main factor limiting the 
therapeutic effect and prognosis of tumor patients and 
may lead to tumor recurrence [39]. Therefore, improv-
ing the understanding of the mechanisms of tumor drug 
resistance will help the treatment of oral cancer and is 
the key to improving tumor prognosis. Many current 
studies have been conducted in the direction of lncRNA 
regulation as a therapeutic and prognostic point for oral 
cancer to improve tumor resistance to drugs in clinical 
first-line radiotherapy regimens to improve treatment 
outcomes [40]. Copper chelates are currently used as 
antitumor agents in combination with platinum-based 

Table 2 List of 16 antitumor drugs that are more sensitive in high-risk patients and 4 antitumor agents with more sensitivity in 
patients with low risk

16 antitumor drugs that are more sensitive to patients in the high-risk group

 Antitumor drugs Description

 AKT inhibitor AKT inhibitor

 AZ628 Raf inhibitor

 BAY 61–3606 Syk inhibitor

 Embelin IAP inhibitor

 Epothilone.B Macrolide antitumor factors

 Gemcitabine Gemcitabine

 GSK-650394 SGK inhibitor

 Imatinib tyrosine kinase inhibitor

 Mitomycin C Mitomycin C

 MS-275 Entinostat HDAC inhibitor

 PAC-1 Caspase activator

 Pyrimethamine Ethambutol

 Roscovitine CDK inhibitor

 Salubrinal eIF2α dephosphorylation inhibitor

 Sorafenib The serine/threonine kinase activities of RAF-1 and B-Raf and tyrosine 
kinase activities of VGFR-2, VEGF-3, PDGF-β, KIT and FLT-3 receptors were 
inhibited

 Thapsigargin Tunicamycin,endoplasmic reticulum stress inducer

4 antitumor drugs that are more sensitive to patients in the low-risk group

 Antitumor drugs Description

 Erlotinib HER1/EGFR tyrosine kinase inhibitor

 Lapatinib Lapatinib

 WZ-1–84 PARP inhibitor

 Z-LLNle-CHO γ-Secretase inhibitor I
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chemotherapeutic agents in many tumor resistance or 
recurrence, which can enhance the sensitivity of chemo-
therapeutic agents and produce good synergy [41]. The 
risk model is used as a possible indicator to predict drug 
sensitivity and highlights the potential of CRLS in the 
clinical development of future personalized treatment 
strategies. We showed that 20 drugs were sensitive; most 
of them most were targeted therapeutics, and 16 poten-
tial drugs in the high-risk group contained gemcitabine 
and sorafenib. Gemcitabine belongs to the cell cycle-
specific antimetabolite class of chemotherapeutic agents 
[42]. In clinical applications, gemcitabine is used to treat 
various solid tumors such as pancreatic, head and neck, 
and breast cancers [43–45]. Pauwels studied the radio-
sensitizing effect of gemcitabine on tongue cancer CAL-
27 cells and found that the mechanism may be related to 
the promotion of apoptosis [46]. Sorafenib is a multiki-
nase inhibitor that functionally blocks the repair of DNA 
damage in NF-κB and head and neck squamous cells. The 
synergistic effect of sorafenib in combination with radia-
tion on human oral squamous cell carcinoma in vitro has  
also been demonstrated [47, 48], promoting apoptosis and 
inhibiting migration and invasion of oral cancer cells when 
used in combination with chemotherapeutic agents [49].

In contrast, there are four potential drugs in the low-
risk group, including erlotinib and lapatinib. Erlotinib is 
a small-molecule tyrosine kinase inhibitor [50]. Studies 
have shown that erlotinib can inhibit the growth of squa-
mous cell carcinoma of the tongue (SCC-15). In addition, 
erlotinib inhibited the growth of SCC-15 cells in concert 
with cisplatin and radiation. EGFR-targeting erlotinib in 
combination with VEGF inhibitors also showed prom-
ising results in phase I and II trials in metastatic and 
recurrent oral cancers [50]. Lapatinib is a well-tolerated 
oral EGFR and HER2 inhibitor in cancer patients [51]. 
Based on the 8-CRL model, we conclude that combin-
ing immunotherapy with chemotherapy or other targeted 
inhibitors will offer a precise and personalized clinical 
treatment strategy for individuals with OSCC. Although 
this risk model can provide the choice of potential drugs, 
clinical application needs to be demonstrated through 
cell experiments and clinical trials.

To predict the accuracy of our prognostic model, a pre-
liminary RT-qPCR test showed that GCC2-AS1, THAP9-
AS1, LINC00847, and WDFY3-AS2 were up-regulated in 
OSCC cell lines relative to human normal oral keratino-
cyte lines (HOK). AC005746.1 presented down-regula-
tion in OSCC cell lines, and the levels of these lncRNAs 
conformed to the findings of bioinformatics analysis. 
Nevertheless, we noted an abnormally high expression of 
STARD4-AS1 and CDKN2A-DT in OSCC cells, and Cox 
regression analysis suggested that it may play a protective 
role. This seems to contradict the conventional wisdom 

that genes highly expressed in tumors are oncogenes, 
and poorly expressed genes are cancer-suppressor genes. 
In fact, we have missed an important point that tumors 
result from staged development. For example, TGF-β, 
which acts at different stages of cancer, may be oncogenic 
in early stages and pro-oncogenic in late stages [52]. 
Although the expression of CRL detected by RT-qPCR 
was not in complete consistence with the findings of bio-
informatics analysis, it demonstrated the accuracy of the 
prediction of our model to a certain extent, and further 
research is needed. In conclusion, the 8-CRL marker 
found in our study provides a new target for future mech-
anism research and a new idea for further in  vivo and 
in vitro experimental research.

Overall, this work exhibits the following clinical value 
and limitations. First, we constructed a novel cupropto-
sis-related lncRNA prognostic model and validated for 
the first time a novel pathway of lncRNA regulation of 
cuproptosis for OSCC. Second, the model can be applied 
to be an independent predictor of OSCC patients and 
can be adopted for the identification of the prognosis 
and immune response of OSCC patients, providing a 
novel idea to guide the immunotherapy of OSCC. Third, 
we also predicted drug sensitivity, which provides a new 
direction to promote future precise and personalized 
targeted therapy. The next research plan of this project 
is to collect more samples, use clinical follow-up data to 
demonstrate the value of our prognostic model, and then 
conduct in vitro and in vivo experiments further to inves-
tigate the potential mechanism of 8-CRL in OSCC.

Conclusion
The 8-CRL prognostic model, developed for predicting 
prognosis, immune response, and drug sensitivity in oral 
squamous cell carcinoma (OSCC), should be given signif-
icant attention in the construction of novel CRL models. 
Further exploration of this model could prove instrumen-
tal in developing effective models for OSCC.

Materials and methods
The collection of data
The Cancer Genome Atlas (TCGA) database (https:// 
portal. gdc. cancer. gov/ repos itory) provided transcrip-
tome profiles and clinical characteristics of 373 OSCC 
samples, containing 32 normal and 341 tumor samples.

Identification of cuproptosis‑related LncRNAs
To identify the CRLs, a total of 19 cuproptosis-related genes 
(CRGs) were summarized from recently published litera-
ture [6] (Supplementary Table S2). Using the GENCODE 
website (https:// www. genco degen es. org/, as of September 
3, 2021) to retrieve signature GTF annotation files, 16,876 
lncRNA were identified from the TCGA-seq OSCC RNA 

https://portal.gdc.cancer.gov/repository
https://portal.gdc.cancer.gov/repository
https://www.gencodegenes.org/
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data to distinguish the mRNA and lncRNA. This study 
used Pearson’s correlation analysis which was considered 
an accepted method to investigate the correlation between 
coding genes and lncRNAs to examine the co-expression of 
cuproptosis-related genes (CRGs) in each signature among 
OSCC samples. We have set various R values based on the 
published documents and chosen R > 0.4 and P < 0.001 as 
the best cutoff value eventually. Sankey plots were made 
by the “ggalluvial” R package (version of 4.1.0; https:// 
www.r- proje ct) to demonstrate the degree of association 
between CRL and CRG. With the aim of examining the 
prognostic ability of these CRLs, OSCC samples were clas-
sified into training and test group in a random and equal 
manner. For the purpose of screening lncRNAs in relation-
ship to prognosis, Univariate Cox regression analysis was 
adopted. In addition, LASSO regression analysis was used 
to screen for lncRNAs that were significantly associated 
with overall survival (OS) in OSCC patients. This study 
conducted a multifactorial Cox regression analysis to gen-
erate the best model. Finally, Eight lncRNAs associated 
with cuproptosis were considered as prognostic factors. 
Risk scores were calculated with the following equations: 
Riskscore =

n

i=1
Coef(i)× x(i) , x(i) and Coef(i) represent 

the expression levels and corresponding coefficients of each 
prognostic lncRNA, respectively.

Construction of the cuproptosis‑related prognostic model
We adopted the model formula for calculating scores for 
the samples. With the median risk score of the training 
group, there were high-risk and low-risk groups. R pack-
ages (survival and survminer) were applied to Kaplan-
Meier survival analysis, risk score curve, and survival 
status scatter plot to the training group to contrast the 
survival difference and confirmed in the testing and total 
cohorts. With the risk scores and survival statistics, the 
risk heatmap of the model lncRNAs was plotted using the 
“pheatmap” package. Clinical subgroups were established 
on the basis of age, sex, clinical stage, and pathological 
grade. Kaplan-Meier survival analysis was adopted for 
verifying whether the model can be employed for indi-
viduals exhibiting various clinical features.

Validation of the prognostic model
For the purpose of evaluating the feasibility of the model, 
prognostic features were assessed in the testing and entire 
cohorts. We made univariate and multivariate regression 
analyses to demonstrate whether the prognostic model 
can determine the prognosis of OSCC patients indepen-
dently of other clinical factors. Additionally, with the use 
of the “timeROC” package, the 1, 3, and 5 years receiver 
operating characteristic (ROC) curves were made, aiming 

to validate further the predictive ability of the estab-
lished risk prognostic model. Based on the R packages 
“rms” and “regplot”, this study built a Nomogram using 
the 8-CRL signature, including risk scores, age, and stage 
information. Using the nomogram, this study assessed 
the prognosis of OSCC patients at 1, 3, and 5 years. Cali-
bration curves were used for identifying the accuracy and 
reliability of the nomogram. One patient was chosen ran-
domly to demonstrate the nomogram’s predictive utility. 
To study the distribution of high- and low-risk popula-
tions, we adopted principal component analysis (PCA).

Functional and pathway enrichment analysis
Cuproptosis-related prognostic model was created 
through TCGA data analysis, and patients were divided 
into high-risk group and low group. The “limma” pack-
age was first used to detect differentially expressed genes 
(DEGs) between high-risk and low-risk groups. Genes 
which had |logFC|> 1 and FDR < 0.05 were of statistical 
significance. In addition, in order to identify the effects of 
the two risk groups on cell function and the different path-
ways of enrichment, we used gene ontology (GO) pathway 
enrichment analysis and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway enrichment analysis.

Immune function and Tumor Immune Dysfunction 
and Exclusion (TIDE) score
Using the CRL model, we compared single-sample gene 
set enrichment analysis (ssGSEA) and the “gsea” package, 
aiming to identify the differences in immune function. 
Besides, a heatmap was applied to display the differences 
in immune function. Additionally, the TIDE score was 
adopted to identify the outcome and response of cancer 
patients to immunotherapy. TIDE scores, CAF, IFNG, 
CD8, CD274, MDSC, T-cell dysfunction, Merck18, TAM 
M2, and T-cell exclusion scores were acquired from the 
TIDE website (http:// tide. dfci. harva rd. edu).

Tumor Mutation Burden (TMB) analysis
A waterfall plot was made with the “maftools” package, 
aiming to evaluate and compare the frequency of gene 
mutations. Then, the “limma” and “ggpubr” packages were 
adopted for comparing the survival analysis and Tumor 
Mutation Burden (TMB) between different subgroups as 
well as to compare the prognosis and tumor mutation status.

Drug sensitivity analysis
“pRophetic” program package was used to evaluate 
the median inhibitory concentration (IC50) of 138 
common antitumor agents in order to predict the 
response to chemotherapy agents in patients with 

https://www.r-project
https://www.r-project
http://tide.dfci.harvard.edu
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OSCC in two different risk subgroups. The IC50 val-
ues between the two risk groups were analyzed by the 
Wilcoxon signed-rank test.

Real‑time quantitative PCR analysis to confirm 
the expression of CRL
Human normal oral keratinocytes (HOK), human oral 
squamous cell line (CAL-27), and human tongue squa-
mous cell carcinoma cells (SCC25) were purchased from 
ScienCell. All the cells were cultivated in high-glucose 
DMEM medium covering 10% fetal bovine serum as well 
as 1% penicillin/streptomycin solution. The extraction 
of total RNA was performed from the cells with TRIzol. 
Subsequently, a reverse transcription kit was employed 
to synthesize cDNA. qRT-PCR was made with 2X SG 
Fast qPCR Master Mix and a Thermo Fisher QuantStu-
dioTM1 Plus fluorescent quantitative PCR instrument. 
Through the 2-ΔΔCT method, the levels of each gene 
were quantified with GAPDH being the internal reference 

for normalization. We can find primer sequences in Sup-
plementary Table S3 (The primer sequence number of 
AL132800.1 was not observed in the literature and data-
bases, so it cannot be confirmed at this time).

Statistical analysis
Statistical analyses and visualization were mainly con-
ducted by R software (version 4.1.0). Student’s t-test, 
one-way ANOVA and Welch ANOVA were used to cal-
culate differences between two groups or more. A log-
rank test with the best cutoff value was used to plot a 
Kaplan-Meier (KM) survival curve to analyze OS. Uni-
variate, Lasso, and multivariate Cox regression analyses 
were established to evaluate the prognostic significance. 
Pearson correlation analysis was used to get the correla-
tion of gene expression. ROC and its AUC curve were 
adopted to estimate the reliability and sensitivity of the 
prognostic signature. Two-sided p < 0.05 was regarded 
as statistically significant.

Appendix

Fig. 10 Level of 8-CRL in normal oral keratinocytes and OSCC cell lines identified through RT-qPCR. *P < 0.05, **P < 0.01, and ***P < 0.001. qRT-PCR 
Quantitative reverse transcription–polymerase chain reaction
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