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Abstract 

Background Fibrinogen plays pivotal roles in multiple biological processes. Genetic mutation of the fibrinogen cod-
ing genes can result in congenital fibrinogen disorders (CFDs). We identified a novel heterozygous missense mutation, 
FGG c.1168G > T (NCBI NM_000509.6), and conducted expression studies and functional analyses to explore the influ-
ence on fibrinogen synthesis, secretion, and polymerization.

Methods Coagulation tests were performed on the patients to detect the fibrinogen concentration. Whole-exome 
sequencing (WES) and Sanger sequencing were employed to detect the novel mutation. Recombinant fibrinogen-
producing Chinese hamster ovary (CHO) cell lines were built to examine the recombinant fibrinogen synthesis 
and secretion by western blotting and enzyme-linked immunosorbent assay (ELISA). The functional analysis of fibrino-
gen was performed by thrombin-catalyzed fibrin polymerization assay. In silico molecular analyses were carried 
out to elucidate the potential molecular mechanisms.

Results The clinical manifestations, medical history, and laboratory tests indicated the diagnosis of hypodysfibrino-
genemia with bleeding phenotype in two patients. The WES and Sanger sequencing revealed that they shared 
the same heterozygous missense mutation, FGG c.1168G > T. In the expression studies and functional analysis, 
the missense mutation impaired the recombinant fibrinogen’s synthesis, secretion, and polymerization. Furthermore, 
the in silico analyses indicated novel mutation led to the hydrogen bond substitution.

Conclusion The study highlighted that the novel heterozygous missense mutation, FGG c.1168G > T, would change 
the protein secondary structure, impair the “A: a” interaction, and consequently deteriorate the fibrinogen synthesis, 
secretion, and polymerization.
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Background
Fibrinogen is a 340  kDa soluble plasma glycoprotein 
synthesized and secreted from the liver. It plays pivotal 
roles in multiple biological processes such as hemosta-
sis, angiogenesis, and so on [1]. The fibrinogen poly-
peptide monomer consists of Aα, Bβ, and γ chains, 
encoded by FGA, FGB, and FGG, respectively [2]. After 
being linked by inter- and intra-chain disulfide bonds, 
the fibrinogen undergoes dimerization before being 
released into the bloodstream. Structurally, it exhibits 
a trinodular structure containing a central E-domain 
and two identical outer D-domains. The E-domain is 
formed by the N-terminus of the Aα, Bβ, and γ chains, 
and the D-domains are composed of the C-terminus of 
the Bβ and γ chains [3]. Notably, The γ chains within 
the D-domains (γD region) contain numerous func-
tional sites and structures for fibrin polymerization, 
like “D:D” interface, γ-γ cross-linking, and high-affinity 
 Ca2+-binding sites [4]. Therefore, the mutation occur-
ring in the γD region may lead to potential deficiencies 
in fibrinogen quantity and quality.

Over 400 congenital fibrinogen disorders (CFDs) 
have been reported so far, and they showed differ-
ent clinical features and molecular abnormalities [5]. 
The current classification system of CFDs relies on the 
functional and antigenic fibrinogen levels [6]. Hypofi-
brinogenemia or afibrinogenemia is characterized by 
low or absent plasma fibrinogen antigen levels. Dysfi-
brinogenemia or hypodysfibrinogenemia mainly dis-
plays reduced functional activity, possibly accompanied 
by qualitative fibrinogen deficiencies. Extensive stud-
ies have been conducted to explore the underlying 
mechanisms of fibrinogen disorders. It was revealed 
that genetic mutations occurring within the fibrinogen 
coding genes played crucial roles in the pathogenesis 
of CFDs, encompassing missense mutations, nonsense 
mutations, frame-shift mutations, splice-site abnormal-
ities, and so on [7]. For one thing, mutations undermine 
DNA stability, mRNA splicing, and protein synthe-
sis as well as the secretion of fibrinogen. For another, 
they adversely affect fibrinogen functions like fibrin 

polymerization or fibrinopeptide cleavage. So recogniz-
ing these mutations is significant for the diagnosis and 
prognosis of potential carriers.

We recently identified a novel heterozygous missense 
mutation, FGG c.1168G > T, in a 60-year-old female and 
her 30-year-old daughter with hypodysfibrinogenemia. 
Recombinant fibrinogen-producing CHO cell lines were 
established to evaluate the recombinant fibrinogen syn-
thesis, secretion, and polymerization. In the present 
study, we aimed to explore and clarify the underlying 
genetic mechanism comprehensively.

Results
Clinical description
Patient 1 (propositus) was a 60-year-old woman admit-
ted to the hospital because of a lumbar compression frac-
ture. Before the percutaneous vertebroplasty, the blood 
clotting parameters showed severely low fibrinogen 
concentration. Notably, ecchymosis was observed in the 
lower back. This was uncommon in individuals without 
low plasma fibrinogen conditions and indicated bleed-
ing risks. Upon inquiry about the medical history, she 
recalled significantly increased menstrual volume and 
prolonged duration before but did not receive treatment 
due to economic constraints several decades ago. During 
the surgery, she received a 200 mL fresh plasma infusion 
as a precautionary measure against unexpected surgical 
bleeding. Finally, the micro-invasive operation was suc-
cessful and the bleeding (< 10 mL).

Patient 2 was a 30-year-old woman and the daughter of 
Patient 1. She had been experiencing abnormally heavy 
menstrual bleeding and causal moderate anemia for a 
long time. The low plasma fibrinogen concentration was 
detected by routine blood biochemical examination. The 
symptomatic treatment was ongoing, but the etiology 
remained unknown. The results of routine and special 
blood clotting tests were listed in Table  1. Notably, the 
ratios of Fg: C to Fg: Ag of these two patients were 0.42 
and 0.66, which indicated the possibility of congenital 
hypodysfibrinogenemia.

Table 1 Routine and special coagulation

PT Prothrombin time, APTT Activated partial thromboplastin time, TT Thrombin time, Fg C Fibrinogen activity, Fg Ag Fibrinogen antigen; Ratio: Fg: C/ Fg: Ag, FDP 
Fibrinogen degradation products

Age Clotting Times (s) Fibrinogen (g/L) FDP
(ug/mL)

PT APPT TT Fg: C Fg: Ag

Patient 1 60 12.6 26.1 26.2 0.47 1.12 2.60

Patient 2 30 13.5 37.8 25.6 0.60 0.91 6.26

Healthy donor 28 11.1 25 15.4 3.52 3.10 1.40

Normal Range 10.0–14.0 24.8–34.6 14.0–21.0 2.00–4.00 2.00–4.00 0–5.00
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For the deceased status of Patient 1’s parents and hus-
band many years ago, we were unable to obtain the clini-
cal sample. Therefore, we could not explore the clinical 
significance of this mutation at the familial level.

WES and Sanger sequencing
After careful consideration, we proposed the possibil-
ity of congenital hypodysfibrinogemia and performed 
the WES and Sanger sequencing on their blood samples. 
The WES results revealed a shared heterozygous nucle-
otide mutation at position 1168 in FGG exon 9 (FGG 
c.1168G > T), turning the aspartic acid into tyrosine at 
the 390th residue of the γ-chain (γD390Y, also called 
γD364Y in mature protein form). We predicted it to be 
a missense mutation by bioinformatic techniques, which 
had yet to be present in the GnomAD repository (report-
ing data on > 125,000 exomes and > 15,000 genomes; 
https:// gnomad. broad insti tute. org/) and dnSNP data-
base (https:// www. ncbi. nlm. nih. gov/ snp/). No genetic 
mutations were detected in FGA and FGB. Moreover, the 
results of Sanger sequencing on the FGA, FGB, and FGG 

were consistent with those of WES, which indicated the 
reliability of the WES (Fig. 1).

Characterization of plasma fibrinogen
On reducing conditions, there were three bands compat-
ible with the Aα, Bβ, and γ chains in each sample, and no 
abnormal protein degradation was observed (Fig. 2a). By 
using western blotting, the single band position in the 
patients was consistent with that of the γ-chain from the 
healthy donor (Fig. 2b), supporting the findings from the 
WES and Sanger sequencing. Furthermore, it indicated 
that the mutation would not impair the synthesis of the 
fibrinogen Aα and Bβ chains. Therefore, we tended to 
explore the impact of the mutation on the γ-chain and 
fibrinogen synthesis.

Synthesis and secretion of recombinant fibrinogens in CHO 
cell lines
To investigate the impact of the missense mutation on 
the γ-chain and fibrinogen expression, we established 
stable recombinant WT and γD390Y γ-chain-producing 
CHO cell lines. We first evaluated the synthesis of the 

Fig. 1 The Sanger sequencing results of the healthy donor (a) and patients(b) demonstrated that the single nucleotide appeared at position 1168 
in the antisense strand of FGG (FGG c.1168G > T; NCBI NM_000509.6)

https://gnomad.broadinstitute.org/
https://www.ncbi.nlm.nih.gov/snp/
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fibrinogen γ-chain by western blotting analysis. As 
expected, it was shown that the molecular weight and 
expression of the γD390Y γ-chain were the same as that 
of the WT. The results indicated the mutation did not 
reduce the γ-chain expression, which was accordant with 
the previous bioinformatic prediction (Fig. 3a).

Next, we co-transfected the FGA and FGB expression 
vectors into the recombinant WT and γD390Y γ-chain 
producing CHO cell lines to generate recombinant 
fibrinogen and evaluated the impact of missense muta-
tion on fibrinogen synthesis and secretion. The results 
demonstrated that fibrinogen concentrations in the cell 
lysates from the recombinant WT and γD390Y fibrino-
gen-producing CHO cell lines were 459.10 ± 20.72  ng/
mL and 349.10 ± 7.21  ng/mL, respectively. Fibrinogen 
concentrations in culture media from the recombinant 
WT and γD390Y fibrinogen-producing CHO cell lines 
were 199.0 ± 12.60  ng/mL and 112.6 ± 1.22  ng/mL. The 
fibrinogen concentration ratios of the culture media to 
cell lysates of the recombinant WT and γD390Y fibrin-
ogen-producing CHO cell lines were 0.43 ± 0.0081 and 
0.32 ± 0.0032, respectively (Fig. 3b-d). Taken together, the 
results showed that the missense mutation in FGG sig-
nificantly impaired fibrinogen synthesis and secretion.

Thrombin‑catalyzed fibrin polymerization
The turbidity curves of the plasma fibrinogen and 
recombinant fibrinogen were depicted in Fig.  4, and 
three related parameters were presented in Supple-
mentary Table 1. The results demonstrated a significant 

impairment in the fibrin polymerization ability of the 
patient-derived plasma fibrinogen compared to that from 
the healthy donor. Similarly, the recombinant γD390Y 
fibrinogen showed significantly lower fibrin polymeriza-
tion ability than the recombinant WT fibrinogen.

In silico molecular analysis
Protein modeling has emerged as a powerful technique 
to speculate and elucidate in-depth molecular mecha-
nisms underlying the quantitative and qualitative defects 
in fibrinogen. We performed an in silico molecular analy-
sis to evaluate the impact on the secondary structure of 
fibrinogen caused by each amino acid substitution. Com-
pared to the γ chain of the WT fibrinogen, the amino 
acid alternation induced transformations in hydrogen 
bond (HB). The HB between γD390 and γHistidine366 
(γH366) was replaced by those between γD390 and 
γThreonine400 (γT400), as well as γD390 and γD403 
(Fig.  5). By reviewing relevant studies, we discovered 
the variants γD390N, γD390H, and γD390V led to dys-
fibrinogenemia, characterized by polymerization defects 
without low fibirnogen concentration [8]. These seems 
contradicted from the current study, so additional analy-
sis were needed to figure out the differences among the 
variants. Compared with the wild type, these three muta-
tions only influenced the quality and quantity of HB 
between the D390 and H366, which cause exceptional 
polymerization defects (Supplementary Fig.  1). How-
ever, D390Y caused new hydrogen bond formation with 

Fig. 2 a By using SDS-PAGE to characterize the purified fibrinogens (3 μg), there were three bands compatible with the Aα, Bβ, and γ chains 
in the healthy donor and patients. b By using western blotting with anti-FGG polyclonal antibody, the single band position in the patients 
was consistent with that of the γ-chain from the healthy donor
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Fig. 3 a Western blotting analysis for fibrinogen γ-chain from recombinant WT and γD390Y fibrinogen-producing CHO cell lines. b The fibrinogen 
concentration of culture media and cell lysates. c The fibrinogen concentration of cell lysates. d The ratio of fibrinogen concentration in culture 
media to that in cell lysates. The fibrinogen concentrations were detected by ELISA. **, P < 0.01; ***, P < 0.001

Fig. 4 Thrombin-catalyzed plasma fibrinogen a and recombinant fibrinogen polymerization (b). The fibrinogen (0.5 mg/mL) was initiated 
with thrombin (0.05U/mL). The experiments were performed in triplicate and representative polymerization curves were indicated



Page 6 of 9Xu et al. Hereditas           (2024) 161:4 

another amino acid, which was believed to induce signifi-
cant and different changes.

Discussion
We identified a new heterozygous missense mutation, 
FGG c.1168G > T, in two patients leading to congenital 
hypodysfibrinogenemia with bleeding phenotype. Ini-
tially, the coagulation tests on the propositus showed a 
decreased fibrinogen concentration level and reduced 
fibrinogen activity/antigen ratio, indicative of hypod-
ysfibrinogenemia. Subsequently, we observed a similar 
condition in her daughter and proposed a genetic pre-
disposition. Therefore, the WES and Sanger sequencing 
was performed, and the results showed the same single 
nucleotide mutation. Since no gene abnormalities in FGA 
and FGB genes, we focused on exploring the impact of 
the novel missense mutation in FGG on fibrinogen syn-
thesis, secretion, and polymerization.

Admittedly, there are some similarities between hypo-
dysfibrinogenemia and hypofibrinogenemia [9]. For 
instance, they can be asymptomatic and discovered 
by accident during routine coagulation tests in certain 
cases. Additionally, the bleeding tendency can be trig-
gered under stimuli like trauma, surgery, and pregnancy 
[10]. However, the reduction of functional and antigenic 

fibrinogen levels in hypodysfibrinogenemia was dispro-
portional. Some researchers took the ratio of Fg: C to Fg: 
Ag below 0.7 as an efficient standard to distinguish them 
[11]. Nevertheless, others challenged the reliability due 
to the variations in reference materials and assay repro-
ducibility [12]. Hence, in the current study, expression 
studies and functional analysis were necessary to acquire 
an accurate diagnosis and determine the adverse effects 
of the variants. Moreover, the thrombotic risk in hypo-
dysfibrinogenemia can significantly increase relative to 
hypofibrinogenemia, and special caution is required in 
performing plasma replacement therapy [13]. Thus, we 
performed limited plasma infusion under close monitor-
ing of the coagulation in this case.

It was well established that the fibrin polymeriza-
tion would begin once the thrombin eliminated the 
N-terminal fibrinopeptide A (FPA) in the fibrinogen α 
chain [14]. The cleavage of the FPA exposed a polym-
erization site termed knob “A” to a constitutive comple-
mentary-binding pocket (hole “a”) in the γD region and 
promoted their combination [15]. The “A: a” interaction 
would cause the fibrin monomers to align in a stag-
gered overlapping end-to-middle domain arrangement 
and consequently form double-stranded twisting fibrils. 
Remarkably, the γ337-379 (in mature protein form) were 

Fig. 5 a, b Predicted tertiary structure and surface structure of the WT γ-chain, respectively. The yellow area indicated the hole “a”. Red referred 
to the γD390. c, d The HB between the γ390 and other residues in WT and γD390Y fibrinogen γ-chain. The green and blue sticks referred to different 
amino acids. The yellow dotted lines meant HB between residues. Hole “a” is a constitutive complementary-binding pocket in the γD region 
that would interact with the polymerization site termed knob “A”. HB, hydrogen bond
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identified as the primary fibrinogen polymerization site. 
Because this domain played a critical role in the elec-
trostatic interactions that facilitated the important first 
step in fibrin polymerizatio, where the mutations would 
have significant detrimental effects [16]. In the present 
study, the γD390Y was located at this region and resulted 
in impaired polymerization ability, which was consist-
ent with previous reports. Interestingly, the novel muta-
tion showed a different clinical manifestation of low 
fibrinogen concertration besides polymerization defect. 
According to the in silico analyses, γD390Y led to the 
more significant changes in HB than other variants. As 
HB serves as a strong inter-molecular force and plays 
pivotal roles in the formation, stabilization, and func-
tion of protein, γD390Y is enough to significantly impair 
the structural stability, synthesis, and secretion of the 
fibrinogen and consequently lead to more severe clinical 
manifestations.

Conclusion
In conclusion, the current study revealed that the novel 
heterozygous missense mutation, FGG c.1168G > T, 
would change the protein secondary structure, impair 
the “A: a” interaction, and consequently deteriorate the 
fibrinogen synthesis, secretion, and polymerization.

Materials and methods
Coagulation test
Peripheral blood samples from patients were collected 
into standard anti-coagulant tubes. After centrifugation 
at 3000  rpm for 10  min, the platelet-poor plasma was 
obtained and then used for coagulation tests within 2 h. 
Subsequently, the prothrombin time (PT), activated par-
tial thromboplastin time (APTT), thrombin time (TT), 
and fibrinogen activity (Fg: C) were measured by the 
Clauss method with STA-R Evolution automatic analyzer 
(Diagnostic Stago, Inc). The fibrinogen antigen (Fg: Ag) 
and fibrinogen degradation products (FDP) were assayed 
by immunoturbidimetry using the automatic analyzer 
(Beckman Coulter, Inc). The fibrinogen activity/antigen 
ratio cutoff of 0.7 was considered diagnostic for dysfi-
brinogenemia, which has not been validated so far.

DNA isolation, WES, and Sanger sequencing
The DNA from both patients for genetic analysis was 
isolated from peripheral blood by using a genome DNA 
isolation kit (Qiagen, Hiden, Germany), according to the 
manufacturer’s instructions. Afterward, WES and Sanger 
sequencing were carried out by Kingmed Center for 
Clinical Laboratory (Changsha, China).

Purification and characterization of fibrinogen
We performed immunoaffinity chromatography to purify 
the plasma fibrinogen from the patients and healthy 
donors with anti-IF-1 monoclonal antibody (LSI Medi-
ence) conjugated to a Sepharose 4B column. Further-
more, ammonium sulfate precipitation methods were 
utilized to purify the fibrinogen from the recombi-
nant fibrinogen-producing CHO cell lines [17, 18]. The 
acquired fibrinogen was resuspended and the concentra-
tion was measured by a BCA protein assay kit (Beyotime 
Biotech, P0010S).

Subsequently, we applied the sodium dodecyl sulfate–
polyacrylamide (SDS-PAGE) to analyze the purity and 
characterization of the purified fibrinogen in reducing 
conditions (10% polyacrylamide gel) and stained it with 
Coomassie Brilliant Blue G-250.

Construction of mini‑gene expression vectors
The FGA (NM_000508.5), FGB (NM_001184741.1), and 
FGG (NCBI NM_000509.6) (both wild type and mutant 
type) cDNAs were synthesized by Tsingke Biotech. Then, 
the FGA and FGB cDNAs were cloned at XhoI and 
BamHI sites of the pcDNA 3.1-3xFlag vector, and FGG 
cDNA was cloned at XbaI and BamHI sites of the pCDH-
CMV-MCS-EF1-puromycin vector. The primers (Supple-
mentary Table  2) were designed by the SnapGene 6.0.2 
software (GSL Biotech LLC).

Lentivirus packaging, infection, and recombinant 
fibrinogen γ chain‑producing cell lines establishment
The HEK293T cells were seeded in 6-well culture plates 
and transfected with recombinant, lentiviral, and packag-
ing vectors, including pMDL, VSVG, and REV at a ratio 
of 10:5:3:2 using Lipofectamine 2000. The virus was col-
lected, filtered, and added to the CHO cells 48  h later, 
followed by medium replacement 12  h later. Afterward, 
the 4ug/ml puromycin was added to screen out the sta-
ble recombinant wild type (WT) and mutant type (MT) 
fibrinogen γ chain-producing CHO cell lines. In addition, 
the FGA and FGB expression vectors were transfected 
into the stable cell lines to produce the recombinant 
fibrinogen.

Western blotting and ELISA
After the transfection, both the recombinant WT and 
MT fibrinogen-producing CHO cells were lysed in lysis 
buffer (50 mM Tris–HCl (pH 7.4), 150 mM NaCl, 1 mM 
EDTA and 1% Triton X-100) containing protease inhibitor 
cocktail (Sigma, P2714-1BTL) on ice for 30 min followed 
by centrifugation. Protein concentration was meas-
ured by the BCA method, as mentioned before. Soluble 
lysates were subjected to SDS-PAGE and transferred to 
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polyvinylidene fluoride (PVDF) membranes (Merck Mil-
lipore). After blocking with 5% BSA (BioFroxx, Germany) 
or fat-free milk, membranes were probed with primary 
antibodies (Proteintech, 15,841–1-AP) at 4 ℃ overnight 
and secondary anti-rabbit (ABclonal, AS063) or anti-
mouse (ABclonal, AS064) antibodies at room temperature 
for 1 h. Signals were visualized after incubation with Clar-
ity Western ECL substrate (Bio-Rad, Hercules, CA, USA). 
The ELISA (Abcam, ab241383) was performed to detect 
fibrinogen concentration in the cell lysates and culture 
media under the manufacturer’s instructions.

Thrombin‑catalyzed fibrin polymerization
The turbidity curves of fibrin polymerization were recorded 
at 350  nm using a UV-1280 (Shimadzu, Japan). Human 
α-thrombin (Yeasen, China)-catalyzed fibrin polymeri-
zation was performed, as described before. We aimed to 
acquire three parameters: lag time, maximum slop (Max-
slope), and absorbance change (ΔAbs) in 30 min.

In silico molecular analysis
After acquiring the protein sequence, we performed 
protein structure homology modeling with the Swiss-
model platform (https:// swiss model. expasy. org/) on 
the recombinant WT and MT fibrinogen gamma chain. 
Then mutation was analyzed by Mutagenesis Wizard of 
PyMOL. We selected each rotamer with the least steric 
clashes of available rotamers during the process.

Statistical analysis
All Data were presented as the mean ± SD. Student’s 
t-tests were performed to figure out the differences 
among groups using GraphPad Prism 9.0. A statistical 
significance was considered when P < 0.05.
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