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Abstract 

Lung adenocarcinoma exhibits high incidence and mortality rates, presenting a significant health concern. Concur-
rently, the COVID-19 pandemic has emerged as a grave global public health challenge. Existing literature suggests 
that T cells, pivotal components of cellular immunity, are integral to both antiviral and antitumor responses. Yet, 
the nuanced alterations and consequent functions of T cells across diverse disease states have not been comprehen-
sively elucidated. We gathered transcriptomic data of peripheral blood mononuclear cells from lung adenocarcinoma 
patients, COVID-19 patients, and healthy controls. We followed a standardized analytical approach for quality assur-
ance, batch effect adjustments, and preliminary data processing. We discerned distinct T cell subsets and conducted 
differential gene expression analysis. Potential key genes and pathways were inferred from GO and Pathway enrich-
ment analyses. Additionally, we implemented Mendelian randomization to probe the potential links between pivotal 
genes and lung adenocarcinoma susceptibility. Our findings underscored a notable reduction in mature CD8 + central 
memory T cells in both lung adenocarcinoma and COVID-19 cohorts relative to the control group. Notably, the down-
regulation of specific genes, such as TRGV9, could impede the immunological efficacy of CD8 + T cells. Comprehen-
sive multi-omics assessment highlighted genetic aberrations in genes, including TRGV9, correlating with heightened 
lung adenocarcinoma risk. Through rigorous single-cell transcriptomic analyses, this investigation meticulously delin-
eated variations in T cell subsets across different pathological states and extrapolated key regulatory genes via an inte-
grated multi-omics approach, establishing a robust groundwork for future functional inquiries. This study furnishes 
valuable perspectives into the etiology of multifaceted diseases and augments the progression of precision medicine.
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Introduction
Lung Adenocarcinoma (LUAD) represents a prevalent 
subtype of lung cancer, and its incidence ranks among 
the highest globally, especially among smokers [1]. The 
prevalence varies across different regions, yet it consti-
tutes a significant proportion of all lung cancer cases. The 
5-year survival rate in late stages is relatively low primar-
ily due to the typical late-stage diagnosis when the dis-
ease has already advanced; however, early detection and 
improved treatment methods can significantly enhance 
survival chances [2]. Treatment for LUAD is generally 
comprehensive, encompassing surgery, chemotherapy, 
radiation therapy, targeted therapy, and immunotherapy 
[3–5]. Currently, researchers are exploring biomarkers 
for diagnosing, prognosticating, and monitoring LUAD, 
with the aim of identifying superior treatment plans for 
patients [6, 7].

The COVID-19 pandemic, triggered by the SARS-
CoV-2 infection, presents a spectrum of outcomes rang-
ing from asymptomatic infections to life-threatening viral 
pneumonia and Acute Respiratory Distress Syndrome 
(ARDS) [8]. While host factors like age, gender, and Body 
Mass Index (BMI) are known to correlate with disease 
severity, they don’t fully explain the observed inter-indi-
vidual variations [9]. Despite the availability of COVID-
19 vaccines, treating the disease remains imperative [10]. 
Nonetheless, numerous uncertainties persist regarding 
the genetic underpinnings of susceptibility to SARS-
CoV-2 infection and the genetic determinants of COVID-
19 severity. Early studies have suggested that the genes 
dictating an individual’s blood type might impact sus-
ceptibility to SARS-CoV-2, and other immunity-related 
genes could also affect infection risk [11]. Polymorphisms 
in the ACE2 gene and the presence of TMPRSS2 (Trans-
membrane Serine Protease 2) are believed to increase the 
risk of SARS-CoV-2 infection. Moreover, research has 
shown that males are more susceptible to SARS-CoV-2 
infection than females [12]. Several variants affecting the 
expression of ACE2 and TMPRSS2 receptors related to 
COVID-19 have been associated with susceptibility and 
risk factors for the disease [13]. Some genetic studies have 
identified potential gene variants correlated with suscep-
tibility to SARS-CoV-2 infection and severity of COVID-
19. For instance, certain gene variants might affect the 
binding and entry of the virus to cell surface receptors, 
thereby influencing infection risk and disease severity 
[14]. Beyond genetic factors, disease severity is also asso-
ciated with age, gender, BMI, and medical history. Eth-
nicity too correlates with susceptibility and severity of 
COVID-19 [15]. By elucidating the genetic determinants 
of COVID-19 severity and susceptibility to SARS-CoV-2 
infection, risk stratification for prioritizing immunization 
among high-risk individuals is feasible. Furthermore, a 

deeper understanding of these genes could guide person-
alized treatment approaches [14]. These studies and find-
ings illustrate an evolving understanding of COVID-19, 
yet numerous unknown aspects require further explora-
tion. With the accumulation of more research and data, 
a better grasp of the genetic basis of SARS-CoV-2 infec-
tion, and how genetic information can be utilized to 
assess and mitigate COVID-19 risk is anticipated.

Single-cell technology, a revolutionary research 
method, elucidates cellular heterogeneity and func-
tional diversity by analyzing various biological attrib-
utes of individual cells. Through single-cell technology, 
researchers can delve into cell states, activities, and 
interactions among cells, enriching multifaceted stud-
ies in the life sciences domain. The continuous advance-
ment of single-cell technology, especially in multiplex 
analysis, high throughput, high resolution, and accuracy, 
has enabled a comprehensive depiction of a cell’s genetic 
landscape [16]. Recent progress includes single-cell epi-
genomics, single-cell genomics for lineage tracing, spa-
tially resolved single-cell transcriptomics, and single-cell 
omics sequencing technologies based on third-gener-
ation sequencing platforms [17]. Due to rapid techno-
logical developments, encompassing improvements in 
throughput, accuracy, automation, and commercializa-
tion, single-cell RNA sequencing (scRNA-seq) has been 
extensively utilized to address pivotal biological and 
medical questions [17]. Single-cell multi-omics tech-
nology has impacted cell lineage tracing, the creation of 
tissue and cell-specific atlases, tumor immunology, and 
cancer genetics, alongside fundamental and translational 
research in cellular spatial information mapping [16]. 
These technologies have been deployed in research con-
cerning tumors, microbiology, neurology, reproduction, 
immunology, digestive, and urinary systems, unveiling 
the crucial role of single-cell sequencing in both funda-
mental and clinical research [18]. Single-cell technology 
facilitates the generation of cell and tissue atlases, explo-
ration of complex disease biology, thus offering a potent 
tool to solve various problems in the life sciences domain 
[16]. Recently, an increasing number of researchers are 
employing single-cell sequencing technologies to inves-
tigate cell-level specific mechanisms, cell phenotypes, 
and cell-specific gene expression, aiming for a better 
understanding of cellular biological characteristics and 
functions. The ongoing progress and widespread appli-
cation of single-cell technology are propelling multifac-
eted research in life sciences, providing robust support 
to address key questions in biology and medicine. As the 
technology continues to evolve, broader applications of 
single-cell technology are envisioned, and its potential 
to significantly contribute to future scientific research is 
anticipated.
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Mendelian Randomization (MR) epitomizes a robust 
statistical methodology for exploring causal associa-
tions, particularly playing a pivotal role in drug target 
research. This method leverages common genetic vari-
ants as an unconfounded and unbiased "natural rand-
omized trial" to address causality issues [19]. MR has 
been extensively applied to various disease research 
endeavors. For instance, in COVID-19 research, inves-
tigators can employ MR to probe the association 
between specific gene variants and viral infection, as 
well as how these variants influence the course and 
severity of the disease post-infection [20]. In Parkin-
son’s disease research, MR analysis could elucidate 
whether a causal link exists between specific gene 
variants and the risk of developing Parkinson’s dis-
ease [21]. Mendelian Randomization, a potent tool for 
causal inference, offers opportunities to delve into the 

relationship between diseases and drug treatment effi-
cacy. By thoroughly comprehending the principles and 
applications of this method, a better understanding of 
disease pathogenesis and potential treatment strategies 
is achievable.

In this study, we aim to identify potential targets 
between COVID-19 and lung cancer, conducting MR 
analysis by integrating eQTL discovered in blood 
with two independent LUAD genome-wide associa-
tion study (GWAS) datasets. The association between 
TRGV9 and lung cancer was examined. Our study rep-
resents a secondary analysis of publicly available data. 
According to the original GWAS protocols, all par-
ticipants provided informed consent, and all ethical 
approvals for the GWAS were obtained by the original 
GWAS authors. The workflow of this study is illus-
trated in Fig. 1.

Fig. 1 The workflow of the present study
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Methods
Data collection
We downloaded STAR-counts data and clinical infor-
mation from both 54 normal and 503 LUAD samples 
from the TCGA dataset repository (https:// portal. gdc. 
cancer. gov). From this dataset, we extracted TPM-for-
matted data, subsequently undergoing normalization 
processing via log2 (TPM + 1). We retained samples 
possessing RNAseq data and clinical information for 
further analyses. The samples were utilized for sub-
sequent analyses. The log-rank test was employed to 
assess the survival differences between the aforemen-
tioned two or more groups using Kaplan–Meier survival 
analysis. Datasets GSE171555 and GSE162498 were 
retrieved from the GEO database (https:// www. ncbi. 
nlm. nih. gov/). We selected samples from three COVID-
19 infected patients (GSM5227108, GSM5227109, 
GSM5227110), three healthy individuals (GSM5227117, 
GSM5227130, GSM5227134), and three peripheral 
blood samples from patients with lung adenocarci-
noma (GSM4952957, GSM4952958, GSM4952959) for 
10X single-cell sequencing. The FastQC tool assessed 
sequencing data quality, and Cell Ranger was employed 
for read mapping and count matrix generation. We also 
accessed the GSE43458 dataset as an external cohort 
for bulk-RNA analysis and risk model validation. To 
ascertain the potential causal link between differen-
tially expressed genes and lung adenocarcinoma, we 
executed bidirectional Mendelian Randomization (MR) 
on two distinct datasets. Initially, we treated differen-
tially expressed genes as risk factors with lung adeno-
carcinoma as the outcome and subsequently reversed 
this approach. A two-step MR method then evaluated 
the regulatory roles of pivotal genes in lung adeno-
carcinoma. The SNPs utilized as genetic instruments 
were derived from a comprehensive European GWAS 
(https:// gwas. mrcieu. ac. uk/) [22, 23].

Single‑cell data processing and analysis
In our study, we extracted data from various samples 
including normal, COVID-19 infected, and tumor tis-
sues, and generated a Seurat object for each. These 
objects were then amalgamated into a single comprehen-
sive Seurat object, facilitating unified analysis. To ensure 
data integrity, we assessed the proportion of mitochon-
drial and erythrocyte genes in each cell, applying qual-
ity control criteria to exclude cells of suboptimal quality. 
We established a gene count range of 200 to 4000 and a 
mitochondrial gene proportion threshold of less than 
10% for quality control. Subsequently, data normalization 
was performed to mitigate inter-sample variability. Dur-
ing dimensionality reduction and clustering, we initially 

selected 2000 genes with the highest variability for prin-
cipal component analysis (PCA). To further minimize 
batch effects, we employed the Harmony [24] algorithm 
and visualized the data in two dimensions using the 
UMAP technique, which revealed various cell subpopu-
lations in an unsupervised manner. Cell subpopulation 
annotation leveraged the Cell Marker database, with rep-
resentative marker genes displayed via VlnPlot and Fea-
turePlot. Manual cell type labels were assigned to each 
subpopulation and annotations were preserved. In addi-
tion to manual annotation, we explored automated anno-
tation with the SingleR package, presenting the results 
through DimPlot. Following satisfactory annotation, we 
proceeded with differential gene expression analysis, 
adopting a 1.5-fold change and an adjusted p-value of less 
than 0.05 as significance criteria, showcased via Volcan-
oPlot. Differential genes were functionally annotated and 
their expression across cell subpopulations was depicted 
in a heatmap. For data encompassing temporal sequences 
or developmental processes, we utilized the Monocle 
method for cell trajectory reconstruction and the cellchat 
package to examine intercellular communication and 
regulatory dynamics.

CD8_CM Key marker gene eQTL and LUAD’s Mendelian 
randomization analysis
Gene expression data preprocessing involved normali-
zation, batch effect mitigation, and missing value han-
dling. Key marker genes of CD8_CM, in comparison with 
other T cells and cells, were identified. An eQTL analysis 
for the CD8_CM marker gene followed. Gene symbols 
converted to ENSEMBL IDs ensured data uniformity. 
Low-quality SNPs underwent removal, and genotype 
fitting occurred. A stringent eQTL P-value threshold, 
such as 5 × 10^-8, was set. From the ’finn-b-C3_NSCLC_
ADENO_EXALLC’ GWAS dataset, SNPs related to the 
key marker gene were extracted as MR analysis instru-
mental variables. Following the R^2 and F-statistic cal-
culations for each SNP, only high-quality SNPs remained. 
Outcome data corresponding to these instrumental vari-
ables facilitated Mendelian Randomization analysis using 
the TwoSampleMR package.

Validation set MR analysis, bidirectional Mendelian MR 
and colocalization analysis
The validation set underwent initial MR analysis. By com-
bining outcome and instrumental variable data, a har-
monized dataset (’harmonised_dat’) emerged. The MR 
analysis utilized a ’mr_modified’ function, estimating a 
gene’s causal impact on the target disease and computing 
the Phenotypic Variance Explained (PVE). Visualization 
tools like the ’forest’ function presented the MR results. 
Subsequently, a Bidirectional Mendelian Randomization 

https://portal.gdc.cancer.gov
https://portal.gdc.cancer.gov
https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
https://gwas.mrcieu.ac.uk/
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analysis was conducted. Instrumental variable data 
linked to the reverse Mendelian disease ("ieu-a-985") 
were extracted and merged with the corresponding out-
come data to produce a ’harmonized LUAD gene.’ The 
vcfR package processed the gene expression’s eQTL data. 
Post data organization and merging, a colocalization 
analysis was conducted, employing the ’coloc.abf ’ func-
tion to evaluate Bayes factors under various colocaliza-
tion hypotheses. The results were then interpreted in 
light of the Bayes factors’ magnitude and distribution.

Regional association plot, phenoscanner analysis 
and directional filtering
Initially, we constructed the regional association plot. 
By reading the genotype data eqtl-a-ENSG00000211695.
vcf (in VCF format) and related association data, we 
extracted eQTL information relevant to the target gene. 
Based on this, eQTLs located within a specified region 
were selected and organized into a format suitable for 
drawing the regional association plot. The drawing pro-
cess utilized the locuscomparer package to visualize the 
association information of eQTL and GWAS, provid-
ing an intuitive graphical presentation for subsequent 
analysis. Next, PhenoScanner analysis was conducted. 
By loading existing GWAS summary statistics, the cus-
tom mr_phenoscanner function was used to query the 
association information of each SNP in directories such 
as GWAS, eQTL, and pQTL. This process employed the 
PhenoScanner tool to query different directories based 
on SNP associations and to organize the results. Finally, 
through Steiger filtering, for each trait and PMID com-
bination, the most significant SNP was screened and 
summarized into a comprehensive result table. Lastly, a 
directional filtering analysis was conducted. The steiger_
filtering function was applied to the SNPs in harmo-
nised_dat to perform the Steiger test, assessing the R2 
difference between SNP with exposure and SNP with 
outcome. This aids in verifying the position of SNP in the 
causal chain. The directionality_test function was also 
used to test the directional relationship between the SNP, 
exposure, and outcome.

Exploring the function of exposure factors 
at the single‑cell level
First, through single-cell RNA expression analysis, we 
explored the expression of the target gene at the single-
cell level and used visualization tools such as DotPlot 
and FeaturePlot to display the expression patterns of key 
genes. Next, trajectory analysis was conducted. Using the 
slingshot tool, we constructed cell developmental trajec-
tories and visualized them with UMAP. In addition, key 
genes driving the trajectory were analyzed. Functions like 
find_switch_logistic_fastglm were employed to identify 

switch genes that might play an essential role in the tra-
jectory development. The plot_timeline_ggplot was used 
to depict gene expression patterns over pseudotime. Sub-
sequently, cell communication analysis was executed. 
Using the CellChat tool, communication between dif-
ferent cell clusters was analyzed, including identifying 
ligand-receptor pairs, projecting onto protein interaction 
networks, and calculating communication probabilities. 
Functions like netVisual_circle and netVisual_bubble 
visually displayed the communication network structure 
between different cell clusters. In metabolic analysis, 
the scMetabolism tool was used to assess the metabolic 
activity of macrophages. We presented the activity differ-
ences of cells from different gene groups in specific meta-
bolic pathways using the metabolism pathway’s DotPlot. 
Finally, differential gene analysis was conducted. Using 
Seurat’s FindAllMarkers function, differentially expressed 
genes in the CD8_CM cell subgroup were identified. 
The pheatmap was utilized to draw the heatmap of the 
expression matrix, displaying the gene expression pat-
terns across samples. Differential gene analysis was also 
conducted at the bulk data level by reading external 
datasets.

Trajectory inference
We employed the monocle3 R package [25, 26] to infer 
the differentiation trajectories of T cells. Initially, the data 
underwent preprocessing steps including quality control, 
normalization, and dimensionality reduction. Subse-
quently, following the guidelines provided by the official 
documentation, we configured the parameters before 
conducting cell state inference and transcriptomic trajec-
tory analysis.

Cell culture
A549, PC-9, and H1299 cell lines obtained from the Cell 
Bank of the Chinese Academy of Sciences. The cells were 
cultured at 37 °C with a high-glucose medium containing 
10% fetal bovine serum and 5% CO2.

Western blotting
Using RIPA buffer supplemented with phenylmethylsul-
fonyl fluoride (PMSF), protease inhibitors (PI), and phos-
phatase inhibitors (PPI). The total protein concentration 
of the supernatants was quantified using the Pierce 
BCA Protein Assay Kit according to the manufacturer’s 
instructions (Thermo Fisher Scientific, USA). The pro-
teins were then separated by SDS-PAGE and transferred 
onto PVDF membranes (Millipore, Billerica, MA, USA) 
for subsequent analysis. Membranes were blocked with 
5% non-fat milk in Tris-buffered saline containing 0.1% 
Tween-20 (TBST) for two hours at room temperature, 
followed by overnight incubation at 4 °C with the primary 
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antibody TRGV9(TRGC1) (abcam, USA, ab192031). 
After washing thrice with TBST, the membranes were 
incubated with horseradish peroxidase-conjugated sec-
ondary antibody. Chemiluminescent detection was 
employed to visualize and capture the immunoreactive 
bands.

Data analysis
All data analyses were performed based on R 4.1.3, with 
p < 0.05 considered statistically significant.

Results
Single‑cell transcriptomic analysis of lung 
adenocarcinoma, COVID‑19, and normal groups
In this study, we selected three COVID-19 patient sam-
ples, three healthy controls, and three sets of peripheral 
blood from lung adenocarcinoma patients for 10X sin-
gle-cell RNA-seq analysis from datasets GSE171555 and 
GSE162498. Initial screening was performed to elimi-
nate low-quality data (Supplementary Fig.  1a), retaining 
56,851 cells for subsequent analysis. Data normalization 
was displayed (Supplementary Fig.  1b), and to mitigate 
batch effects among different samples, we integrated and 
standardized the samples using the Harmony method, 
followed by normalization, principal component analy-
sis (PCA) dimensionality reduction, and clustering (Sup-
plementary Fig.  1c). Visualization of each cluster was 
accomplished using the UMAP technique based on the 
first 15 principal components (Supplementary Fig.  1d). 
Specific marker genes were employed to identify and 
annotate different cell subpopulations within the single-
cell RNA sequencing data. Using the Seurat package’s 
VlnPlot function, we generated violin plots of marker 
gene expression for various cell types, including B cells, 
natural killer (NK) cells, T cells, monocytes, dendritic 
cells (DC), megakaryocytes/platelets, and erythrocytes, 
demonstrating their distribution across cell subpopula-
tions (Supplementary Fig. 2a). Furthermore, the Feature-
Plot function was used to generate feature distribution 
maps of these marker genes, visualizing their spatial dis-
tribution within cells (Supplementary Fig.  2b). We con-
firmed the number of cell subpopulations defined by 
unsupervised clustering algorithms and annotated them 
using the RenameIdents function, aligning each cluster 
with its corresponding cell type. Cell distributions were 
visualized using the UMAP algorithm and the DimPlot 
function (Fig. 2a) and segmented according to tissue type 
(Fig. 2b). Subsequently, we renamed 26 clusters using the 
Single R package and visualized cell distributions with 
UMAP reduction and DimPlot (Fig.  2c), segmenting by 
tissue type (Fig. 2d). To ensure the reliability of annota-
tions, manual annotation was also performed, visualizing 

cell distributions with UMAP and DimPlot (Fig. 2e) and 
segmenting by tissue type (Fig. 2f ) to enhance the under-
standing of cell type distributions across different tissues.

GO, KEGG, and WikiPathway enrichment analysis
Based on the 7 cell types identified, genes with fold 
changes ≥ 1.5 or ≤ -1.5 were considered differentially 
expressed. We visualized the top 5 overexpressed and 
underexpressed genes in T_cells, NK_cell, Monocyte, B_
cell, platelet, DC, and Erythrocytes (Fig. 3a). To decipher 
the function of differentially expressed genes in various 
cell clusters, we referenced databases like TF (Transcrip-
tion Factors), CSPA (Cell Surface Protein Atlas), GO_BP 
(Gene Ontology Biological Processes), KEGG (Kyoto 
Encyclopedia of Genes and Genomes), and WikiPath-
way. Our results offer a preliminary understanding of the 
function of differentially expressed genes in each cell type 
(Fig. 3b).

Single‑cell transcriptomic analysis of T cells
T cells play multifaceted roles in both cancer and 
COVID-19, encompassing direct cytotoxicity against 
infected or aberrant cells, assisting the activity of other 
immune cells, and maintaining immunological balance. 
A thorough understanding of T cell functions and inter-
actions is crucial for the development of effective thera-
peutic and vaccine strategies in both contexts. Initially, T 
cell subpopulations were extracted from comprehensive 
single-cell RNA sequencing data, followed by preproc-
essing, dimension reduction, clustering, and visualiza-
tion analyses. The distribution of 17  T cell clusters was 
visualized using UMAP and DimPlot (Fig. 4a), segmented 
by tissue type (Fig.  4b). Cell proportion charts (Fig.  4c) 
and Dot Plots (Fig.  4d) illustrated the distribution and 
expression of characteristic genes within different T cell 
subpopulations, providing a visual analytical foundation 
for a deeper understanding of their functions and char-
acteristics. We visualized the distribution of four T cell 
subpopulations with UMAP and DimPlot (Fig.  4e), also 
segmented by tissue type (Fig. 4f ). Figure 4G shows the 
cell proportions across different samples, where we noted 
a higher proportion of CD8_CM in the normal group 
compared to the COVID and tumor groups, and a higher 
proportion of CD4_Naïve cells in the COVID and tumor 
groups relative to the normal group.

Enrichment analysis of four T_cell subgroups based on GO, 
KEGG and WikiPathway
Based on the identified four cell types, differential gene 
expression was determined using the findallmarker func-
tion, with genes exhibiting a fold change of ≥ 1.5 or ≤ -1.5 
considered significant. We visualized the top five upreg-
ulated and downregulated genes in the CD4_Naïve, 
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CD4_EM, CD8_CM, and CD8_EM subgroups (Fig.  5a). 
GO_BP analysis indicated the CD4_EM group’s differ-
ential genes primarily enriched in pathways related to 
cellular response to antibiotics and UV-B radiation. For 

the CD8_CM group, these genes were chiefly associated 
with leukocyte-mediated immunity, cell killing, and lym-
phocyte-mediated cytotoxicity pathways. KEGG analy-
sis demonstrated that the CD8_CM subgroup’s genes 

Fig. 2 Single-cell transcriptomics landscape of various samples. a, b Depict the single-cell transcriptomic profiles of different samples, showcasing 
the diversity and distribution of cell clusters. c, d Using the Single R package, we annotated the 26 clusters. The results of this automated 
classification are depicted, showing various cell populations. e, f Post manual annotation, seven distinct cell populations were identified: T_cells, 
NK_cell, Monocyte, B_cell, platelet, DC, and Erythrocytes
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were enriched in natural killer cell-mediated cytotoxicity, 
whereas the CD8_EM subgroup’s genes were linked to 
inflammatory bowel disease, antigen processing and pres-
entation, and Th17 cell differentiation pathways. WikiP-
athway analysis showed enrichment in interactions of 
natural killer cells in pancreatic cancer for the CD8_CM 
group, and allograft rejection for the CD8_EM group 
(Fig. 5b). Collectively, these findings offer insights into the 
distinct functional roles and biological features of various 
T cell subgroups, enhancing our understanding of their 
involvement in immune responses and disease processes.

Trajectory analysis and cellular communication of primary 
T cell types
T cell development originates in the bone marrow, 
where lymphocyte precursor cells undergo a series 
of differentiation steps, inclusive of T cell precursors. 
This differentiation is progressive, characterized by 
continuous rather than discrete changes. Cells at dif-
ferent developmental stages express distinct gene sets. 

With scRNA-seq, we can capture cells at various stages, 
enabling exploration of continuous differentiation tra-
jectories. The UMAP dimensionality reduction algo-
rithm outperforms other algorithms in capturing the 
global and topological structures of datasets, including 
the spatial positioning of individual cells. We employed 
the slingshot R package to assess cellular differentiation 
processes. The trajectory analysis identified CD4_Naïve 
as the starting point, culminating in CD8_CM, sug-
gesting CD8_CM as terminally differentiated CD8_T 
cells (Fig. 6a). To discern the role of CD8_CM in both 
COVID-19 and LUAD and its intercellular relation-
ships, we conducted cellular communication analysis. 
By analyzing samples from COVID-19 and LUAD, we 
constructed a communication network of CD8_CM 
with other cells (Fig.  6b, d). Comparative analysis of 
pathways enriched in CD8_CM and other cells revealed 
frequent communication through MIF -(CD74 + CD44) 
and MIF -(CD74 + CXCR4) signals with B cells, NK 
cells, and CD8_EM cells in both diseases (Fig.  6c, e). 

Fig. 3 Functional analysis of differential genes (a). Display of the top five highly and lowly expressed genes in the 7 cell groups in the volcano plot 
(b). GO, KEGG and WikiPathway enrichment analysis
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Fig. 4 In-depth Analysis and Visualization of T-cell Subsets. a, b Featureplot showcasing the distribution of T-cells across 17 clusters. c Displays 
the proportion of each cell subset in different samples. d Dot Plot illustrating the expression of characteristic genes across various cell subsets. 
e, f Manually annotated T-cell subgroups including CD4_Naïve, CD4_EM, CD8 CM, and CD8_EM. g Depicts the distribution of T-cell subgroups 
in different samples
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Thus, CD8_CM is posited as a pivotal player in both 
COVID-19 and LUAD.

MR analysis using key marker genes identifies three novel 
causal genes for LUAD
We conducted Mendelian randomization (MR) analysis 
on single-cell RNA sequencing data for lung cancer to 
uncover key genes potentially influencing lung adeno-
carcinoma risk. Initially, using the Seurat tool, we iden-
tified 70 key genes (Supplementary file 1) distinguishing 
CD8_CM T cells from other cell types and subtypes and 
determined significant markers for subsequent analysis. 
For deeper insight, we successfully converted gene sym-
bols to corresponding ENSEMBL IDs using org.Hs.eg.db. 
This was followed by a two-sample MR analysis, involv-
ing extraction of SNP data related to our genes of inter-
est as exposure data, retrieving lung adenocarcinoma 
outcome data from the EBI database, and harmonizing 
between exposure and outcome datasets. The MR analy-
sis highlighted several genes significantly associated with 
lung cancer risk. Specifically, the RNF125 gene exhibited 
an odds ratio (OR) of 0.5826 (95% CI: 0.3474—0.9771, 
p = 0.0406). For the CD8B gene, the OR was 3.2331 
(95% CI: 1.0898—9.5920, p = 0.0344). The TRGV9 gene 
displayed an OR of 0.3927 (95% CI: 0.2283—0.6757, 
p = 0.0007). These associations hint at potential genetic 
markers influencing the aforementioned cancer risk. To 
visually represent the -log10-transformed p-values against 
ln (OR) for each gene, we generated a volcano plot, with 

genes showing significant p-values highlighted (Fig.  7a). 
The plot distinctly reveals genes with significant positive 
and negative associations. Subsequently, we developed a 
forest plot, visualizing the OR and 95% CI for each signifi-
cant gene, emphasizing the robustness and direction of 
each gene’s association (Fig.  7b, c, d and e). In the two-
sample Mendelian randomization (MR) analysis, it was 
observed that RNF125, CD8B, and TRGV9 exhibit no 
heterogeneity concerning lung adenocarcinoma (LUAD). 
The results are detailed in (Supplement Table 2). Employ-
ing the Inverse Variance Weighted method, the analy-
sis revealed that RNF125, CD8B, and TRGV9 do not 
exhibit horizontal pleiotropy in the MR analysis of LUAD 
(RNF125: P = 0.755703216; CD8B: P = 0.711380024; 
TRGV9: P = 0.571487335) (Supplement Table  3, Supple-
ment Table  1). These tests evaluated the consistency of 
genetic associations across different SNPs and identified 
potential horizontal pleiotropy. The analysis validated 
our identified associations, indicating minimal biases and 
confounding. The results of this study offer fresh perspec-
tives and directions for subsequent biological validation 
and mechanistic research.

Mendelian randomization and colocalization analysis 
of genes RNF125, CD8B and TRGV9 with lung cancer risk
To verify the reliability of our findings, we conducted 
a validation set analysis using Mendelian randomiza-
tion. We explored the association between three genes, 
namely RNF125, CD8B, and TRGV9, and lung cancer risk. 

Fig. 5 GO, KEGG and WikiPathway enrichment analysis based on 4 subgroups of T_cells (a). Display of the top five highly and lowly expressed 
genes in the 4 cell groups in the volcano plot (b). GO, KEGG and WikiPathway enrichment analysis
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The results showed a significant association of RNF125 
mutations with lung cancer risk (OR = 0.5858, 95% CI: 
0.3504–0.9793). Mutations in CD8B were associated 
with an increased lung cancer risk (OR = 3.2477, 95% CI: 
1.0978–9.6079), while mutations in TRGV9 were linked 
to a reduced risk (OR = 0.3977, 95% CI: 0.2313–0.6837) 
(Fig. 8a). Additionally, the MR analysis for lung cancer and 
the TRGV9 gene showed a non-significant association 
(OR = 1.0686, 95% CI: 0.8316–1.3731). We also conducted 
a reverse MR analysis, which, when considering lung can-
cer as the exposure and the TRGV9 gene as the outcome, 
did not show a significant association (Fig. 8b, c, d and e).

Investigating the association between the TRGV9 
gene and lung adenocarcinoma using Mendelian 
Randomization
In this study, we employed the Mendelian randomization 
approach to probe the association between the TRGV9 
gene and lung adenocarcinoma. Initially, we displayed 
the regional association plots for the TRGV9 gene eQTL 

in tandem with the lung adenocarcinoma GWAS results. 
By contrasting their association strengths, we identified 
several single nucleotide polymorphisms (SNPs) demon-
strating pronounced associations across both phenotypes. 
Notably, specific SNPs, such as rs23923593, associated 
with the TRGV9 gene eQTL, also exhibited significant cor-
relation in the lung adenocarcinoma GWAS. This provided 
preliminary evidence hinting at a potential link between 
this gene and lung adenocarcinoma development (Fig. 9). 
We employed the Phenoscanner tool to further delve into 
these SNPs’ associations with other traits. The results 
revealed associations of some SNPs with diverse traits, 
suggesting their involvement in various biological pro-
cesses. To ascertain the causative direction in our MR anal-
ysis, we performed the Steiger test, which discerns which 
trait lies closer to the gene and hence is more likely the 
true exposure. Our findings predominantly aligned with 
our preliminary hypothesis, suggesting that alterations in 
TRGV9 expression could modulate lung adenocarcinoma 
risk. Collectively, our analyses offer preliminary evidence 

Fig. 6 Cellular Differentiation and Communication Analysis in COVID-19 and LUAD. a Cellular differentiation trajectory plot using UMAP, showcasing 
the progression from CD4_Naïve to CD8_CM, implying that CD8_CM represents terminally differentiated CD8_T cells. b, d Cellular communication 
networks constructed for CD8_CM and other cells in both COVID-19 and LUAD samples. The networks highlight potential interactions 
and communication patterns between CD8_CM and other cell types. c, e Differential enrichment signaling pathway analysis between CD8_CM 
and other cells
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supporting a potential causal relationship between the 
TRGV9 gene and lung adenocarcinoma.

Single‑cell transcriptomic analysis reveals TRGV9’s crucial 
role in T‑cell metabolism and function in LUAD
Utilizing the UMAP algorithm, we performed dimension-
ality reduction and visualization on single-cell transcrip-
tomic data to identify distinct cellular subpopulations. We 
first visualized the expression patterns of three key marker 
genes across different cell clusters (Fig.  10a). Subsequently, 
we employed the feature plot function to specifically high-
light the expression of TRGV9 and CD8B within individual 
cells (Fig.  10b and c). Moreover, we segmented the data 
based on tissue type and conducted a focused analysis of 
TRGV9 expression, revealing a lower level of expression in 
tumor tissues compared to normal tissues (Fig.  10d), thus 
providing clues for further functional studies. Employing 
the Slingshot tool, we performed cell trajectory analysis, 
observing the transition of T cells from a naive to a mature 
state along the trajectory (Fig. 10e), which suggests potential 
dynamic changes of T cells during disease progression. The 
distribution of gene expression is shown in Fig. 10f, where 

most genes displayed low activity levels, while a minority 
exhibited relatively high expression. To explore changes in 
gene expression during cell development or transcriptional 
dynamics, we depicted the on/off states of various genes 
over pseudotime (Fig.  10g). Scatter plot analysis was used 
to depict the relationship between the expression of the 
’TRGV9’ gene and pseudotime. Statistical analysis indicated 
a moderate positive correlation (Pearson r = 0.43, p < 0.001), 
suggesting that ’TRGV9’ expression might increase over 
pseudotime (Fig.  10h). Intercellular communication analy-
sis, conducted with the CellChat tool, showed differences 
between the TRGV9 + CD8_CM and TRGV9-CD8_CM 
cell subgroups (Fig. 10i), with the TRGV9 + CD8_CM sub-
group demonstrating more ligand-receptor interactions and 
stronger cell signaling activities. Furthermore, by comparing 
enriched signaling pathways between TRGV9 + CD8_CM 
cells and other cells, we noted that the MIF—(CD74 + CD44) 
and MIF—(CD74 + CXCR4) signaling pathways were 
involved in cell communication in LUAD, paralleling our 
previous findings (Fig.  10j). Metabolic pathway analysis 
revealed distinct states of T cell activation; using the scMe-
tabolism tool, we assessed metabolic activities within the 

Fig. 7 a Volcano plot illustrating the association between key genes and the risk of lung adenocarcinoma. b Forest plot depicting the association 
of key genes with the risk of lung adenocarcinoma. c Mendelian Randomization Heterogeneity Test This assesses the consistency of genetic 
associations across different SNPs. d Pleiotropy Test Evaluates the horizontal pleiotropy across various key genes. e Validity and Robustness 
of Mendelian Randomization. f Results Further validates the identified associations, indicating minimal bias and confounding
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Fig. 8 Validation Queue, Bidirectional Mendel. a Mendelian randomization analysis showing associations of RNF125, CD8B, and TRGV9 gene 
variants with lung cancer risk. b Reverse Mendelian randomization depicting the relationship between lung cancer and the TRGV9 gene. c Scatter 
plot examining heterogeneity in the Mendelian randomization analysis. d Forest plot illustrating the effect sizes for the associations. e Funnel plot 
assessing potential pleiotropy in the Mendelian randomization results

Fig. 9 Regional association map
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cells. Notably, key metabolic pathways differed significantly 
between the TRGV9 + CD8_CM and TRGV9-CD8_CM 
subgroups. Specifically, the TRGV9 + CD8_CM subgroup 
exhibited enhanced uric acid synthesis capabilities, poten-
tially linked to rapid T cell division and energy requirements. 
In the tricarboxylic acid (TCA) cycle, TRGV9 + CD8_CM 
cells showed increased activity, suggesting higher oxidative 
phosphorylation and ATP production. Compared to the 
TRGV9-CD8_CM subgroup, TRGV9 + CD8_CM cells dis-
played reduced fatty acid oxidation activity, likely reflecting 
a preference for glucose over fatty acids as an energy source. 
Additionally, the TRGV9 + CD8_CM subgroup showed 
increased nucleotide synthesis activity, consistent with rapid 
proliferation and DNA synthesis demands. These differ-
ences could be related to T cell activation, proliferation, and 
immune functions (Fig. 10k), providing important insights 
for further research. Differential gene expression analysis 
between TRGV9 + CD8_CM and TRGV9-CD8_CM cell 
subgroups revealed several genes differentially expressed in 
association with LUAD. Notably, the TRGV9 gene exhibited 
significant differences between LUAD and healthy groups. 
Similar gene expression patterns were observed in the over-
all transcriptomic data (Fig. 10l), further validating the accu-
racy and reliability of our single-cell analysis. Additionally, 
partial biological validation was performed, with Western 
blotting analysis indicating higher expression of TRGV9 in 
a normal cell line compared to three other lung adenocar-
cinoma cell lines (Fig. 10m), corroborating the results from 
our dataset analysis.

Trajectory inference of T cell subsets
We conducted cell trajectory analysis to infer the dif-
ferentiation status of T-cell subtypes, understanding the 
evolutionary process of cells in LUAD, while simulta-
neously demonstrating the trajectories of different dif-
ferential genes. (Fig. S4a) illustrates pseudo-temporal 
trajectories of four T-cell subtypes. The specific trajec-
tory directions are depicted in (Fig. S4b), where the 
analysis reveals that CD4_Naïve serves as the pseudo-
temporal starting point, while CD8_CM represents the 

endpoint of cell pseudo-temporality. Additionally, we 
present the expression status of the top 10 differential 
genes in different cell subtypes (Fig. S4c), as well as the 
pseudo-temporal expression changes of the top 10 genes 
across different cells (Fig. S4d). Finally, we identified 240 
co-expression gene modules (Fig. S4e).

Correlation analysis of TRGV9 expression differences 
with clinical features
Initially, utilizing the GeneCards website [27] (https:// 
www. genec ards. org/), we identified TRGV9, also known 
as TRGC1. Through an analysis of TCGA-LUAD and 
its associated clinical information, we observed higher 
expression of TRGV9 in normal tissues compared to 
tumor tissues (Fig. S5a). Additionally, TRGV9 exhibited 
correlation with prognosis (p = 0.001) (Fig. S5b). Subse-
quently, we investigated the correlation of TRGV9 with 
clinical features.We assessed the correlation between 
TRGV9 expression and clinical features using a heat-
map. The results revealed significant differences in the 
distribution of N staging, tumor grading, and T staging 
between high and low expression groups (Fig. S5c). Spe-
cifically, significant differences were observed between 
N0 and N1 (p = 0.024) and N0 and N1 (0.00069) (Fig. 
S5d). Furthermore, significant differences existed 
between stage I and stage III (p = 0.001) (Fig. S5e). Lastly, 
we identified significant differences between T1 and T2 
(p = 0.0021) as well as between T1 and T3 (p = 0.038) 
within the T staging (Fig. S5f ). In summary, the expres-
sion of TRGV9 appears to be closely associated with the 
clinical prognosis of patients with lung adenocarcinoma.

Discussion
The advent of single-cell RNA sequencing (scRNA-seq) 
technology has furnished a unique opportunity to eluci-
date transcriptional heterogeneity among diverse cell types 
under various disease conditions, which is instrumental 
for a deeper understanding of cellular functions and inter-
actions. In this study, scRNA-seq analysis was employed 
to explore the disparities among cell sub-populations 

(See figure on next page.)
Fig. 10 Single-cell transcriptomic analysis reveals the pivotal role of TRGV9 in T-cell metabolism and function in LUAD: a Expression pattern of key 
genes across different cell subpopulations. b UMAP dimensionality reduction visualizing cell subgroups with differential expressions of specific key 
genes. c Expression distribution of the CD8B gene across cells plotted using UMAP. d UMAP plots showing the distribution of cells in conditions 
of COVID, normal, and tumor, highlighting the expression of TRGV9 and CD8B. e Cell trajectory analysis from primary to mature T-cell states 
using Slingshot. f Histogram representing the distribution of gene expression across cells. g Gene on/off status in pseudo-time, reflecting gene 
expression dynamics during cellular developmental or transcriptional processes. h Scatter plot depicting the relationship between the expression 
of the ’TRGV9’ gene and pseudo-time. i Intercellular communication analysis between TRGV9 + CD8_CM and TRGV9-CD8_CM cell subgroups 
using the CellChat tool. j Differential signaling pathways enriched in communications involving TRGV9 + CD8_CM cells compared to others. 
k Metabolic pathway analysis showing the activation states of T cells, revealing differences in metabolic activities between TRGV9 + CD8_CM 
and TRGV9-CD8_CM cell subgroups. l Differential gene expression analysis between TRGV9 + CD8_CM and TRGV9-CD8_CM cell subpopulations, 
with a focus on the significant difference in TRGV9 expression between LUAD and healthy groups. m Expression of TRGV9 in normal cells and three 
adenocarcinoma cell types

https://www.genecards.org/
https://www.genecards.org/
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Fig. 10 (See legend on previous page.)
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between COVID-19, lung adenocarcinoma (LUAD), and 
healthy controls, with a particular focus on T cells.

CD8_CM cells, a sub-group within the CD8 + T cell 
lineage, are memory T cells formed post-antigen acti-
vation [28]. Upon re-encounter with the corresponding 
antigen, CD8_CM cells proliferate rapidly and differenti-
ate into effector T cells, playing a vital role in second-
ary immune responses. They are predominantly found 
in peripheral blood and lymphatic tissues [29], exhibit-
ing both memory and effector functionalities, thereby 
constituting a crucial component of cellular immune 
memory. They play a pivotal role in antiviral and anti-
tumor immunity [30, 31]. CD8 + T cells, especially the 
CD8_CM subset, are primary tumor-infiltrating immune 
cells responsible for delivering antitumor responses. 
Immunotherapeutic strategies aiming to restore the 
effector function of CD8 + T cells have provided support 
for the current successful cancer immunotherapy [32, 
33]. Long-lived memory CD8 + T cells play an impor-
tant role in tumor immunity, inclusive of central, effec-
tor, stem-like, and tissue-resident memory CD8 + T cell 
subsets [34]. Lung cancer induces functional defects 
in CD8 + T cells, which correlates with the clinical 
response to immunotherapy. A deeper understanding 
of the impact of lung cancer on CD8 + T cells might 
aid in the development of new therapeutic approaches 
[35]. Research indicates that SARS-CoV-2 mRNA vac-
cines can offer protection against severe disease as early 
as ten days post-vaccination, a time when neutralizing 
antibodies are barely detectable, suggesting that vaccine-
induced CD8 + T cells might be the main mediators of 
protection during this early stage [36]. CD8 + T cells are 
essential for protective immune responses, directly par-
ticipating in viral clearance, thereby playing a significant 
role in viral infections, including SARS-CoV-2 [30]. It 
was discovered that CD8 + T cell responses are robustly 
activated one week post bnt162b2 mRNA vaccination, at 
a time when circulating CD4 + T cells and neutralizing 
antibodies are only weakly detectable [36]. CD8 + T cells 
might be the principal protective mediators induced 
by mRNA vaccines, expanding in the early protection 
window post prime vaccination, preceding the matura-
tion of other effector arms of vaccine-induced immu-
nity, and are stably maintained post boost vaccination 
[36]. Particularly, CD8_CM cells play a significant role in 
immune surveillance and antitumor immune responses 
in lung adenocarcinoma [37]. In patients with lung 
adenocarcinoma, defective CD8_CM cells are present; 
although these cells exhibit a memory T cell phenotype, 
their functionality resembles effector T cells, manifest-
ing weakened effector function and reduced prolifera-
tive capacity [38]. Additionally, the number of CD8_CM 
cells in lung adenocarcinoma tissues is lower compared 

to peripheral blood, and their cytokine secretion abil-
ity is diminished. This can be partly attributed to the 
tumor microenvironment inhibiting CD8_CM cell activ-
ity through mechanisms like the PD-1/PD-L1 pathway 
[39]. Enhancing the infiltration and activity of CD8_CM 
cells in lung adenocarcinoma tissues through immu-
notherapeutic means is a crucial approach to augment 
antitumor immune responses in patients with lung ade-
nocarcinoma [40]. Some studies have shown that PD-1/
PD-L1 inhibitors can partially restore the functional-
ity of CD8_CM cells in tumors [41–44]. The subset and 
functional state of CD8_CM cells can serve as significant 
biomarkers for predicting and monitoring the therapeu-
tic efficacy of immunotherapy for lung adenocarcinoma 
[45]. Optimizing the functionality of CD8_CM cells will 
contribute to further advancements in immunotherapy 
for lung adenocarcinoma. Moreover, CD8_CM cells are 
key effector cells against SARS-CoV-2 infection, rapidly 
proliferating and differentiating into cytotoxic T lym-
phocytes in COVID-19 patients, directly recognizing 
and killing virus-infected cells, thus inhibiting viral rep-
lication [46, 47]. The increase in CD8_CM cell numbers 
in COVID-19 patients correlates with the severity of the 
disease, indicating their involvement in the body’s antivi-
ral immune responses. Monitoring the dynamic changes 
of CD8_CM cells can assess the immune status of the 
body, providing a basis for evaluating the effects of sub-
sequent immunotherapy and vaccination. In summary, 
the subset and functional state of CD8_CM cells are cru-
cial for immune responses, whether in tumor immunity 
or in combating SARS-CoV-2 and other viral infections. 
In-depth exploration of the biological characteristics and 
functions of CD8_CM cells, along with optimizing their 
functionality through immunotherapeutic strategies, 
will offer significant insights for advancing both antitu-
mor and antiviral immunotherapy.

This study systematically investigated the composition 
and functionality of immune cells in the peripheral blood 
of COVID-19 and LUAD patients, as well as healthy indi-
viduals, through scRNA-seq analysis. Our data initially 
validated the presence of T cells, B cells, NK cells, etc., in 
peripheral blood, consistent with existing literature [48]. 
Notably, compared to healthy controls, both COVID-19 
and LUAD patient groups exhibited a varying degree of 
decrease in the proportion of mature effector CD8 + T 
cells (CD8_CM). This might be associated with weakened 
immune function under disease conditions. For instance, 
multiple research groups have validated the reduction in 
CD8 + T cell numbers and cytotoxicity in the peripheral 
blood of COVID-19 patients [49, 50]. Moreover, in mouse 
tumor models, the tumor microenvironment has been 
shown to inhibit the proliferation of CD8 + T cell [51]. 
Therefore, the variation in CD8_CM cell proportions may 
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reflect their significant role in disease immune responses. 
Through functional enrichment analysis, we discovered 
characteristic pathways of different cell sub-groups cor-
relating with known cellular functions, providing clues to 
understand the physiological functions of each cell type. 
Additionally, through single-cell trajectory analysis, we 
unveiled the dynamic differentiation process of T cells from 
early to mature stages, offering a new perspective for study-
ing T cell development and activation. Furthermore, cell–
cell communication network analysis revealed enhanced 
connections between CD8_CM T cells and B cells, NK 
cells, etc., suggesting their potential involvement in regu-
lating other immune cells during disease progression. This 
study not only identified disease-related immune cell alter-
ations but also proposed potential molecular mechanisms 
through multi-omics analysis. For example, we found that 
the reduction in TRGV9 expression might be one of the 
causes leading to CD8 + T cell functional decline. TRGV9 
is a T cell receptor variable region gene involved in T cell 
antigen recognition [52]. In the tumor microenvironment, 
suppression of TRGV9 expression results in T cells failing 
to recognize tumor antigens, thereby reducing their effec-
tor functionality. In fact, in mouse tumor models, overex-
pression of TRGV9 enhances T cell cytotoxicity against 
tumor [53]. Hence, modulating TRGV9 expression levels 
might emerge as a new strategy to boost T cell antitumor 
effects. Additionally, RNF125, a ubiquitin ligase, also par-
ticipates in various signaling pathway processes, and the 
specific mechanisms related to diseases require further 
investigation [54]. The expression level of TRGV9 in lung 
adenocarcinoma patients is closely associated with clinical 
features, where higher expression correlates with a better 
prognosis. The clinical relevance suggests significant differ-
ences in the pathological characteristics of lung adenocar-
cinoma, particularly in tumor staging and grading. These 
findings imply that TRGV9 could serve as a potential prog-
nostic marker, offering valuable leads for further in-depth 
research and clinical applications in the future.

It’s imperative to acknowledge certain limitations 
in this study. Firstly, due to the limited sample size, the 
results necessitate validation through an expanded sam-
ple scale. Moreover, subsequent studies are required to 
experimentally validate the functional roles of the pre-
dicted key genes in disease onset. Animal model studies 
should also be conducted to explore the molecular mech-
anisms and their regulatory modes. Besides, scRNA-seq 
technology has its inherent batch effects, which require 
caution in data interpretation. Technical noise during 
sample processing and library construction in scRNA-
seq could lead to batch effects, hence careful interpre-
tation of results is essential. Future research needs to 
increase the sample size and adopt more standardized 
procedures to validate the findings. Secondly, Mendelian 

randomization analysis relies on the correlation between 
genetic markers and phenotypes to infer causal relation-
ships. However, potential genetic pleiotropy might lead 
to false-positive results. Thus, the newly discovered can-
didate genes still require functional validation.

Conclusion
This study preliminarily identified the association of 
immune cell composition and key gene expression 
with COVID-19 and LUAD, proposing some verifiable 
hypotheses. This lays the groundwork for exploring the 
molecular mechanisms of diseases, and also provides 
potential targets for the development of new preventive 
and therapeutic strategies. Subsequent research should 
employ a variety of experimental methods for validation 
and exercise caution in interpreting the biological sig-
nificance of various omics data. This study offers valuable 
experience in bridging the gap between single-cell omics 
and genetics, and serves as a paradigm for precision 
medicine research in complex diseases.
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