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Abstract 

Background RNA modifications, especially N6-methyladenosine, N1-methyladenosine and 5–methylcytosine, play 
an important role in the progression of cardiovascular disease. However, its regulatory function in dilated cardiomyo-
pathy (DCM) remains to be undefined.

Methods In the study, key RNA modification regulators (RMRs) were screened by three machine learning mod-
els. Subsequently, a risk prediction model for DCM was developed and validated based on these important genes, 
and the diagnostic efficiency of these genes was assessed. Meanwhile, the relevance of these genes to clinical traits 
was explored. In both animal models and human subjects, the gene with the strongest connection was confirmed. 
The expression patterns of important genes were investigated using single-cell analysis.

Results A total of 4 key RMRs were identified. The risk prediction models were constructed basing on these genes 
which showed a good accuracy and sensitivity in both the training and test set. Correlation analysis showed that insu-
lin-like growth factor binding protein 2 (IGFBP2) had the highest correlation with left ventricular ejection fraction 
(LVEF) (R = -0.49, P = 0.00039). Further validation expression level of IGFBP2 indicated that this gene was significantly 
upregulated in DCM animal models and patients, and correlation analysis validation showed a significant negative 
correlation between IGFBP2 and LVEF (R = -0.87; P = 6*10–5). Single-cell analysis revealed that this gene was mainly 
expressed in endothelial cells.

Conclusion In conclusion, IGFBP2 is an important biomarker of left ventricular dysfunction in DCM. Future clinical 
applications could possibly use it as a possible therapeutic target.

Keywords Dilated cardiomyopathy, RNA modifications, Machine learning, IGFBP2, Left ventricular ejection fraction

Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecom-
mons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Hereditas

†Wei Yu and Hongli Gao contributed equally to this work and should be 
considered co-first authors.

*Correspondence:
Sheng Guo
848439581@qq.com
Jing Huang
doctorhuang2015@163.com; huangjing@cqmu.edu.cn
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-3148-6117
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s41065-023-00298-5&domain=pdf


Page 2 of 14Yu et al. Hereditas          (2023) 160:36 

Introduction
Dilated cardiomyopathy (DCM), characterized by ven-
tricular enlargement and myocardial systolic dysfunction, 
is one of the most intractable diseases in the cardiovas-
cular field [1, 2]. DCM may gradually worsen into severe 
congestive heart failure, which poses a substantial threat 
to the patients’ survival [3]. However, because its etiology 
and underlying mechanisms are not clear, existing treat-
ment strategies, with the exception of heart transplan-
tation, are not effective in treating DCM [4]. Therefore, 
identifying the specific molecular mechanisms associated 
with DCM is essential to prevent its poor prognosis.

Epigenetic modifications usually occur at the genomic 
and transcriptional levels, they also play a critical role 
in post-transcriptional regulation at the same time. It 
is characterized by changes in the temporal and spa-
tial expression patterns of chromatin and genes driven 
by specific enzymes, without altering the nucleotide 
sequence of DNA and subsequent functional changes 
in genetic genes [5, 6]. RNA modification, also known 
as epitranscriptional modification, is one of these epi-
genetic modifications. To date, more than one hundred 
RNA modifications have been identified [7]. The process 
of RNA modification is reversible and it is controlled by 
“writers”, “readers”, and “erasers” [8]. This process can 
directly affect gene expression by controlling RNA pro-
cessing, localization, translation, and decay, and can 
also affect the chemical properties of RNA, including 
base pairing, secondary structure, and interaction with 
proteins [9]. Recently, a wide range of RNA modifica-
tions, including N6-methyladenosine  (m6A), N1-meth-
yladenosine  (m1A) and 5–methylcytosine(m5C) have 
been identified in cardiovascular diseases (CVDs), and 
these modifications are involved in the development of 
CVDs [10]. In addition, some studies have shown that 
 m6A,  m1A and  m5C contribute to the progression of 
several pathological conditions in CVDs [11–13]. These 
pathophysiological changes include cardiac remodeling, 
myocardial fibrosis, mitochondrial dysfunction, cardiac 
hypertrophy and so on [14], which coincide with the 
pathophysiological features of DCM [15–18]. Despite 
this, very few studies have focused on the role of  m6A-, 
 m1A- and  m5C-related regulators in DCM. It is currently 
unclear if dysregulation of the expression of these regula-
tors contributes to the progression of DCM by inducing 
RNA modifications and subsequent pathophysiological 
alterations in the disease.

Therefore, in this study, we sought to use bioinfor-
matics methods to explore the potential roles of  m6A, 
 m1A and  m5C in DCM. We comprehensively searched 
 m6A-,  m1A- and  m5C-related regulators from the pub-
lished papers and obtained 45 RNA modification regu-
lators (RMRs) with different functions [19–21]. Three 

machine learning methods were used to screen key 
RMRs for subsequent analysis. Moreover, we evalu-
ated the correlations between key RMRs and clinical 
characteristics which included left ventricular ejec-
tion fraction (LVEF), left ventricular internal diastolic 
dimension (LVIDD), infection indexes, body mass 
index (BMI), gender, age, and virus infection status 
and inflammatory markers. Insulin-like growth factor 
binding protein 2 (IGFBP2) showed the highest corre-
lation with LVEF in correlation analyses. IGFBP2 is a 
member of the IGFBP family and also acts as a regu-
lator signal transducer ("reader") for  m6A controlling 
its alteration [22]. Several studies have identified this 
gene as an important biomarker for cardiovascular 
disease [23–25], with a diagnostic efficacy even higher 
than that of B-type natriuretic peptide [25]. However, 
its regulatory role in DCM has been less well studied, 
especially the correlation between this gene and clinical 
traits in DCM patients. Therefore, we further validated 
its expression level and correlation with clinical charac-
teristics. Finally, through single-cell analysis we identi-
fied the cell types where IGFBP2 is mainly expressed, 
which provides a novel perspective for the subsequent 
study of the regulatory mechanism of this gene.

Materials and methods
Acquisition and processing of datasets
GSE17800 was sourced from the NCBI Gene Expression 
Omnibus (https:// www. ncbi. nlm. nih. gov/ geo/), which 
contained 8 normal samples and 40 DCM patients. After 
downloading, the dataset was pre-processed by R and 
Perl, which included background calibration, normaliza-
tion, and log2 transformation [26]. In addition, we iden-
tified 45 RMRs by reviewing the literature and obtained 
the expression of RMRs by the “LIMMA” package in 
the DCM dataset for subsequent analysis of differential 
expression of RMRs [27]. Another independent dataset 
(GSE116250) for subsequent validation of the model and 
diagnostic efficacy of key genes. GSE145154 was used as 
a single-cell set.

Functional enrichment analysis
Gene ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathways were completed by the 
" clusterProfiler" R package to analyze the functional 
pathways enriched by differentially expressed RMRs (DE-
RMRs) [28]. Disease ontology (DO) enrichment analysis 
was completed on these genes via the “clusterProfiler” 
package and DOSE package in R [29]. GO/DO terms and 
KEGG pathways with p-value < 0.05 were considered to 
be statistically significant.

https://www.ncbi.nlm.nih.gov/geo/
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Screening of key RNA Modification Regulators (RMRs)
Three machine learning methods, including least abso-
lute shrinkage and selection operator (LASSO), support 
vector machine- recursive feature elimination (SVM- 
RFE), and random forest (RF), were used to determine 
key RMRs. The LASSO algorithm is a form of regression 
analysis that applies regularization techniques to enhance 
prediction accuracy [30]. We completed the LASSO 
regression approach in R using the "glmnet" package 
to reduce the dimensionality of the data to identify the 
genetic biomarkers related to DCM [30, 31]. SVM-RFE 
models were built with the “kernlab” package and com-
pared by their tenfold cross-validated mean errors, and 
the gene corresponding to the minimum error point was 
selected as the disease signature gene [32]. RF is a popu-
lar machine learning technique that has found success 
in numerous industries. It is capable of creating highly 
accurate predictive models with minimal model optimi-
zation requirements, which makes it a valuable tool [33]. 
The “randomForest” package [34] was applied to generate 
random forest models of differentially expressed RMRs, 
and the decreasing accuracy approach (Gini coefficient 
method) was utilized to estimate the importance value of 
the variables of the RF model. Genes with top 8 impor-
tance values were used for further analysis. Finally, the 
key RMRs were obtained by taking the intersection of the 
genes screened by the three machine learning methods.

Constructing risk prediction model and assessing 
diagnostic efficacy based on key genes
In order to forecast the likelihood of DCM, we employed 
a multivariate logistic regression analysis by utilizing the 
"rms" package in R [35]. This analysis was performed 
to create a predictive model based on significant genes 
that were identified by machine learning techniques. To 
assess the precision and usefulness of the nomogram, cal-
ibration and ROC curves were generated. Furthermore, 
in the training group, we plotted the ROC curves of these 
genes to evaluate their diagnostic capabilities. In the test 
group, we initially analyzed the expression of each gene 
in DCM patients and controls, and then confirmed the 
accuracy of the model and the diagnostic efficiency of 
each gene.

Correlation analysis of key RMRs with clinical 
characteristics
To investigate the relationship between key genes iden-
tified by three machine learning approaches and DCM 
progression, we correlated these genes with clinical 
characteristics, which included LVEF, LVIDD, BMI, 
gender, age, viral infection status, and inflammatory 
markers (Table  1). Correlation analysis was performed 

using the Sperman method, and correlation coefficients 
(R) > 0.3 and p-value < 0.05 were considered as screening 
conditions.

Validation of IGFBP2 expression in DCM animal models 
and humans
We focused on IGFBP2 due to its high correlation with 
clinical characteristics and validated its expression in 
both a DCM rat model and patients. Eight SD rats were 
randomly divided into two groups and given doxoru-
bicin (HY-15142; MedChemExpress; 4 mg/kg) and saline, 
respectively, once a week for 8  weeks. After 8  weeks, 
we evaluated cardiac function in the rat using ultra-
sound, measuring left ventricular end-diastolic volume 
(LVEDV), LVEF, LVIDD, and left ventricular end-sys-
tolic volume (LVESV). The observed progressive decline 
in cardiac function and ventricular dilatation indicated 
a successful construction of the model. The total RNA 
from the left ventricle was extracted using the extraction 
kit (NO.RE-03014, Foregene), followed by reverse tran-
scription into cDNA using PrimeScrip RT Master Mix 
(RR036A, Takara). Amplification was performed using 
SYBR Green PreMix (RR420A, Takara), and qPCR was 
carried out with GAPDH as the internal control. The 
primer sequences of the studied genes are as follows: 
(forward primer) 5′-ACA GCA ACA GGG TGG TGG 
AC-3′ and (reverse primer) 5′-TTT GAG GGT GCA GCG 
AAC TT-3′ for GAPDH; (forward primer) 5′-TGG ACG 

Table 1 The clinical characteristics of GSE17800 and recruited 
subjects

Abbreviation: BMI body mass index, LVEF left ventricular ejection fraction, LVIDD 
left ventricular internal diastolic dimension. LVEDV left ventricular end-diastolic 
volume, LVESV left ventricular end-systolic volume

Type Parameter Control DCM p-value

GSE17800 Number n = 8 n = 40 NA

LVEF (%) 60 (52, 64) 35 (28, 39)  < 0.001

LVIDD (mm) 51.4 ± 3.1 69.8 ± 8.0  < 0.001

Gender 
(female)

2 (25%) 12 (30%) 1.0

Age (years) 44 (30, 57) 52 (42, 58) 0.213

Virus (negative) 8 (100%) 18 (45%) 0.005

Inflammation 10 (8, 13) 18 (12, 22) 0.001

BMI (Kg/m2) 25.0 (23.1, 
29.3)

27 (24, 30) 0.306

Recruited 
subjects

Number n = 6 n = 8 NA

LVEDV (ml) 87.4 ± 14.6 248.3 ± 81.4  < 0.001

LVESV (ml) 29.7 ± 7.1 177.6 ± 71.0  < 0.001

EF (%) 66.5 ± 2.9 30.2 ± 14.3  < 0.001

LVIDD (mm) 45.0 ± 4.0 70.5 ± 8.7  < 0.001

Age 54.6 ± 10.8 57.9 ± 8.8 0.579

Gender (Male) 2 (40%) 5 (55.6%) 1.0
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GAA CCA TGA ACA TG-3′ and (reverse primer) 5′-ACA 
CAG CCA GTT CCT TCA TG -3′ for IGFBP2. All animal 
experiments in this study were approved by the Institu-
tional Animal Ethics Committee of the Second Affiliated 
Hospital of Chongqing Medical University (permit num-
ber: (2021)347) and conducted in accordance with the 
relevant guidelines.

Meanwhile, eight patients with dilated cardiomyopathy 
and six age-matched healthy Individuals were recruited 
in the yongchuan Hospital affiliated of chongqing medi-
cal university from february to april 2023. The diagnosis 
of DCM follows relevant guidelines [36]: left ventricular 
or biventricular dilatation and systolic dysfunction, while 
excluding that these changes are caused by hyperten-
sion, valvular or coronary artery disease. We recruited 
six healthy individuals from the medical examination 
center at the hospital. Our study adhered to the princi-
ples outlined in the Helsinki Declaration and received 
approval from the Hospital Medical Ethics Commit-
tee (permit number: 2019029). All participants received 
written informed consent. The study involved collection 
of venous blood from both cases and controls, which was 
then subjected to centrifugation to separate the serum. 
Subsequently, the IGFBP2 content in all serum was 
detected by ELISA (E-EL-H6038, Elabscience). Finally, 
we collected echocardiographic data including LVEDV, 
LVESV, LVEF, and LVIDD from the patients and verified 
the correlation between IGFBP2 concentrations in serum 
and LVEF and LVIDD using the Sperman method.

Single cell analysis
The regulatory pattern of IGFBP2 was explored at the 
single cell level. Quality control, dimensionality reduc-
tion and clustering of DCM scRNA-seq data were per-
formed using “Seurat” package, as described in previous 

studies [37]. “singleR” R package was used to annotate the 
clusters, and then “CellMarker” was used for manual cor-
rection [38]. Based on the identified single-cell clusters, 
we further evaluated the expression of IGFBP2 in each 
cell subset. Integration of all single-cell rank-based gene 
set enrichment analyses with the hallmark gene sets was 
performed by irGSEA (version 2.1.4) R package.

Statistical analysis
The statistical analysis was conducted using SPSS (ver-
sion 26.0) and R (version 4.3.0) software. Continuous var-
iables were analyzed using either the independent sample 
t-test or Mann–Whitney U test depending on their nor-
mality of distribution. The Wilcoxon sum-rank test or 
chi-square test was applied to analyze categorical varia-
bles. We employed the Spearman method to test the cor-
relation between key RMRs and clinical characteristics. A 
p-value of less than 0.05 was used to indicate statistical 
significance.

Results
Identification of key RMRs in dilated cardiomyopathy
First, we extracted the expression of 45 RMRs in the train 
group and performed differential expression analysis. 
Differential expression analysis revealed significant dif-
ferences in the expression levels of 15 RMRs between 
the DCM and control groups (Fig.  1A and B).  And the 
location of RMRs on different chromosomes was illus-
trated in Fig.  2A. Subsequently, three different machine 
learning approaches were used to screen for hub genes 
in DE-RMRs. Eight variables were identified as Char-
acteristic genes of DCM from DE-RMRs by the LASSO 
regression algorithm (Fig. 2B). We used 15 DE-RMRs to 
train a random forest classifier. To identify the optimal 
parameters for the recurrent random forest classification, 

Fig. 1 Differential expression analysis of RNA modification regulators (RMRs) in DCM. A Expression of RMRs in normal group versus DCM group. 
B The heatmap of RMRs between normal samples and DCM samples. Blue represents DCM group and red represents normal group. DCM, dilated 
cardiomyopathy. RMRs, RNA modification regulators; * represents p < 0.05; ** represents: p < 0.01; *** represents: p < 0.001
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Fig. 2 Screening for key RNA modification regulators (RMRs) in DCM. A Circle diagram of RMRs at different chromosomal locations. B Tuning feature 
screening in the LASSO model. C Curve of error versus number of decision trees. Red represents the DCM group, green represents the control 
group, and black represents all of them. D Results of the Gini coefficient method in random forest classifier. The x-axis indicates the genetic variable, 
and the y-axis represents the importance index. E Screening plot of key RMRs based on SVM-RFE algorithm. F The Venn diagram showing the 4 
RMRs shared by LASSO, SVM-RFE and RF
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we evaluated the model’s error rate. Based on the graph 
of the model error versus the number of decision trees 
(Fig. 2C), we selected 26 trees as the parameters for the 
final model, which demonstrated a stable model error. 
Subsequently, we measured the variable importance of 
the output in terms of decreasing precision and decreas-
ing mean square error (Gini coefficient method) and 
plotted the importance scores of the variables (Fig. 2D). 
The top 8 genes were chosen as candidate genes for fur-
ther study. Moreover, we used the SVM-RFE algorithm 
to identify the feature DE-RMRs. The results revealed 
that the model had the lowest error when N = 10 imply-
ing that all DE-RMRs were included (Fig. 2E). The inter-
section of genes identified by the three machine learning 
methods revealed four key RMRs (Fig. 2F).

Enrichment analyses of the RMRs
GO, KEGG, and DO analyses were carried out to identify 
the biological processes and pathways related to RMRs. 
According to the results of GO analysis, DE-RMRs were 
mainly involved in regulation of mRNA metabolic pro-
cess, RNA modification, methyltransferase complex, 
mRNA 3’ − UTR binding and ribosome binding (Fig. 3A). 
In the KEGG pathway, DE-RMRs were mainly involved 
in the Spliceosome, Amyotrophic lateral sclerosis and 

p53 signaling pathway (Fig.  3B). In DO analysis, DE-
RMRs were mainly involved in malignant ovarian surface 
epithelial − stromal neoplasm, ovary epithelial cancer and 
embryoma (Fig. 3C).

Construction of model and evaluation of genetic 
diagnostic efficacy
We conducted multifactorial logistic regression analy-
sis on the screened RMRs and developed a nomogram 
to predict the risk of DCM (Fig. 4A). We also generated 
calibration curves to assess the performance of the nom-
ogram, which demonstrated good agreement (Fig.  4B). 
Furthermore, the ROC curve for the risk prediction 
model showed an impressive AUC of 0.963 (Fig.  4C), 
indicating high accuracy and sensitivity of the model. In 
addition, in the train group, these four genes also showed 
good diagnostic capability to differentiate between DCM 
patients and normal individuals (Fig.  4D). In the test 
group, we further evaluated the expression of these genes 
and found that they were significantly different between 
DCM patients and normal samples (Fig. 5A-D). Further, 
the risk prediction models had good accuracy and sen-
sitivity in the train group (Fig. 5E), and these genes also 
had good diagnostic efficacy (Fig. 5F).

Fig. 3 Gene enrichment analysis of differentially expressed RNA modification regulators (DE-RMRs). A GO enrichment analysis of DE-RMRs. B 
KEGG pathway analysis of DE-RMRs. C DO enrichment analysis of DE-RMRs. Abbreviations: GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes 
and Genomes; DO, Disease Ontology; DE-RMRs, differentially expressed RNA modification regulators
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Correlation analysis of key RMRs with clinical 
characteristics
We further analyzed the correlation of 4 key RMRs with 
clinical characteristics to understand the impact of these 
genes on DCM progression. From the results, IGFBP2 
(R = -0.49; p = 0.00039) and HNRNPC (R = -0.3; p = 0.036) 
were negatively correlated with LVEF (Fig.  6A and B), 
while HNRNPA2B1 (R = 0.32; p = 0.026) was positively 
correlated with LVEF (Fig.  6C). In addition, IGFBP2 
(R = 0.36; p = 0.013) and HNRNPC (R = 0.41; p = 0.0036) 
were positively correlated with LVIDD (Fig.  6D and E), 
while HNRNPA2B1 (R = -0.41; p = 0.0041) was nega-
tively correlated with LVIDD (Fig.  6F). These results 
reveal, to some extent, the effect of these genes on the 

development of DCM. In addition, based on the highest 
correlation between IGFBP2 and LVEF in the correlation 
analysis, further analysis and validation of this gene was 
subsequently performed.

Validation of IGFBP2 expression in animals and humans
After 8 weeks of DOX administration, rats in the DCM 
group exhibited reduced left ventricular wall beat 
amplitude, ventricular dilatation, and left ventricular 
systolic dysfunction as observed through ultrasonogra-
phy (Fig. 7A-F). The expression of IGFBP2 was signifi-
cantly upregulated in the DCM group compared to the 
control group (Fig. 7G). Our findings were further val-
idated in humans, where the concentration of IGFBP2 

Fig. 4 Construction and validation of nomogram. A Development of a prediction nomogram based on four key RMRs. B Calibration curves 
for predicting risk of dilated cardiomyopathy nomogram. C ROC curve of risk prediction model in the train group (GSE17800). D Assessment 
of the diagnostic efficacy of key RMRs in the train group
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Fig. 5 Assessment of gene expression and diagnostic efficacy in test group. Gene expression levels of (A) HNRNPA2B1, (B) HNRNPC, (C) IGFBP2 
and (D) TRMT6 between normal and DCM samples in the test group. (E) ROC curve of risk prediction model in the test group (GSE116250). F 
Assessment of the diagnostic efficacy of key RMRs in the test group
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in the serum of DCM patients was significantly higher 
than that in the control group (Fig.  7H). We verified 
the correlation between serum IGFBP2 concentration 
and LVEF and LVIDD (Fig. 7I and J), and we found that 
IGFBP2 was significantly negatively correlated with 
LVEF (R = -0.87; p = 6*10–5) and positively correlated 
with LVIDD (R = 0.64; p = 0.014), which was consistent 
with the results obtained in the dataset.

Single-cell analysis
Single-cell analysis was performed on left ventricular 
tissue from DCM patients, and a total of eight cell pop-
ulations were identified by dimensionality reduction 
and clustering (Fig.  8A). Further analysis of the dis-
tribution of IGFBP2 in these cell populations revealed 
that the gene was mainly expressed in endothelial cells 
(Fig. 8B and C). The differential pathways of each cell 
cluster were further analyzed by irGSEA. The results 
show that endothelial cells significantly upregulate 
TGF beta (TGF-β) signaling (Fig. 8D-F).

Discussion
In our study, we screened DE-RMRs between DCM 
patients and normal subjects by differential expres-
sion analysis. Subsequently, we used three different 
machine learning methods (LASSO, SVM, and RF) to 
identify the hub genes in DE-RMRs and used these 
hub genes to construct a risk prediction model for 
DCM. Through correlation analysis of genes and clini-
cal traits, we found that IGFBP2 was significantly nega-
tively correlated with LVEF (R = -0.49; P = 0.00039) and 
significantly positively correlated with LVIDD (R = 0.36; 
p = 0.013). Enrolled participants showed a significant 
negative association of IGFBP2 with LVEF (R = -0.87; 
P = 6*10–5), and a significant positive association with 
LVIDD (R = 0.64; p = 0.014). However, there are few 
studies focused IGFBP2 in DCM [39]. One study found 
that high IGFBP2 levels were associated with poorer 
prognosis in patients with DCM [39]. Unfortunately, 
this study only investigated the relationship between 
IGFBP2 levels and patient prognosis and did not assess 
the association between expression level and clinical 

Fig. 6 Correlation analysis of 4 key RMRs with clinical characteristics. Correlation analysis of IGFBP2 (A), HNRNPC (B) and HNRNPA2B1 (C) with LVEF. 
Correlation analysis of IGFBP2 (D), HNRNPC (E) and HNRNPA2B1 F with LVIDD. LVEF, left ventricular ejection fraction; LVIDD, left ventricular internal 
diastolic dimension
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characteristics, nor did it explored the reasons why 
elevated serum IGFBP2 levels led to poor prognosis. 
Our study identified a significant correlation between 
the expression level of IGFBP2 and LVEF. This result 
was consistent with Johanna’s study which found a 
significant negative correlation (R = -0.16; P = 0.03) 
between IGFBP2 and LVEF in patients with aortic ste-
nosis (AS) [40]. Similarly, IGFBP2 levels were found to 

be associated with the amount of left ventricular stroke 
volume in patients with AS [41]. Notably, patients with 
decreased ejection fraction exhibit the most substantial 
cardiovascular mortality compared to those with pre-
served ejection fraction or moderately decreased ejec-
tion fraction [42]. As a result, IGFBP2 may cause an 
adverse prognosis by altering the left ventricular func-
tion. In our study, we also found a significant positive 

Fig. 7 Validation of IGFBP2 expression. Echocardiography of rats in DCM (A) and control (B) groups. C LVEDV, D LVESV, E LVIDD, F LVEF of rats 
treated with saline or doxorubicin. G Relative expression of IGFBP2 in the hearts of rats treated with doxorubicin, normalized to the expression 
of GAPDH. H Measurement of IGFBP2 expression in serum of DCM patients and normal individuals by ELISA. I Correlation of IGFBP2 with LVEF. J 
Correlation of IGFBP2 with LVIDD. * represents: p < 0.05; *** represents: p < 0.001
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correlation between the expression level of IGFBP2 and 
LVIDD. As one of the main parameters used to evaluate 
left ventricular systolic function, LVIDD, its abnormal-
ity is usually associated with left ventricular dysfunc-
tion [43]. The results of the correlation analysis between 

IGFBP2 and LVIDD further supported that IGFBP2 is a 
core biomarker of left ventricular dysfunction.

Furthermore, single-cell analysis directly revealed that 
IGFBP2 was mainly expressed in the endothelial cells of 
DCM patients. In the heart, about 30% of the cells are 

Fig. 8 Single cell analysis of DCM patients. A Umap of eight cell types in GSE145154. B Expression of IGFBP2 in the eight cell populations. The 
legend shows the normalized expression of the color gradient. C Violin plot showing IGFBP2 expression in all cell populations. D Heatmap 
for single-cell rank-based gene set enrichment analysis. E Density scatterplot of TGF beta signaling. F Ridge plot of TGF beta signaling
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cardiomyocytes, the remaining 70% are endothelial cells, 
fibroblasts, smooth muscle cells and immune cells [44]. 
Endothelial cells have been shown to directly modulate 
the contractile state of subjacent cardiomyocytes [45]. 
Endothelial dysfunction can lead to sluggish myocardial 
relaxation and left ventricular filling impairment [46–
48]. In addition, patients with DCM often suffer from 
endothelial dysfunction [49, 50]. IGFBP2 has been shown 
to directly regulate endothelial cell function [51], and 
alterations in its balance may lead to endothelial dysfunc-
tion [52]. Thus, IGFBP2 may contribute to left ventricu-
lar dysfunction and poorer prognosis in patients with 
DCM by participating in endothelial cell dysfunction. 
Furthermore, pathway enrichment analysis on single 
cells has identified significant upregulation of the TGF 
beta (TGF-β) signalling in endothelial cells. TGF-β pro-
motes the conversion of endothelial cells to mesenchymal 
cells, during which the derived myofibroblasts secrete 
large amounts of extracellular matrix into cardiac and 
perivascular tissues, leading to excessive collagen deposi-
tion [53]. The accumulation of excessive collagen disrupts 
myocardial structure and leads to ventricular remodeling 
and cardiac fibrosis [54]. Prolonged myocardial fibrosis 
further leads to ventricular dysfunction, reduced heart 
contractility and cardiac compliance [55]. IGFBP2 may 
promote the conversion of endothelial cells to mesen-
chymal cells through TGF-β signaling, thus aggravat-
ing cardiac fibrosis progression, which negatively affects 
the prognoses and left ventricular functions of DCM 
patients. Subsequently, we will further study the regula-
tory pattern of IGFBP2 at the animal and cellular levels.

Of course, our study had some limitations. First, our 
result didn’t validate in cardiomyocytes due to lack of 
myocardial biopsy tissue. However, to ensure the reli-
ability of the results, further validation was performed in 
another independent DCM dataset, animal models and 
serum from DCM patients. Furthermore, we recruited a 
relatively small sample of patients. So based on our pre-
liminary results, further studies are needed, especially in 
relation to clinical features, to understand the pattern of 
the effect of this gene on DCM.

Conclusion
In summary, by three machine learning approaches, 
this study identified four key RNA modification regu-
lators. Based on these regulators, we constructed and 
validated a risk prediction model for DCM. Further-
more, IGFBP2 had the highest correlation with LVEF in 
the analysis of the correlation between these genes and 
clinical characteristics. Further validation in recruited 
subjects also confirmed a higher negative correlation 
of IGFBP2 with LVEF and a positive correlation with 
LVIDD, suggesting that this gene is a key biomarker of 

left ventricle dysfunction in DCM patients. Single-cell 
analyses showed that IGFBP2 was highly expressed pre-
dominantly in endothelial cells, suggesting that this gene 
may contribute to left ventricular dysfunction and poor 
prognosis in patients with DCM by affecting endothelial 
cell function.
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