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Abstract
Background Atrial fibrillation (AF) is the most common type of cardiac arrhythmia. Nonetheless, the accurate 
diagnosis of this condition continues to pose a challenge when relying on conventional diagnostic techniques. Cell 
death is a key factor in the pathogenesis of AF. Existing investigations suggest that cuproptosis may also contribute 
to AF. This investigation aimed to identify a novel diagnostic gene signature associated with cuproptosis for AF using 
ensemble learning methods and discover the connection between AF and cuproptosis.

Results Two genes connected to cuproptosis, including solute carrier family 31 member 1 (SLC31A1) and lipoic 
acid synthetase (LIAS), were selected by integration of random forests and eXtreme Gradient Boosting algorithms. 
Subsequently, a diagnostic model was constructed that includes the two genes for AF using the Light Gradient 
Boosting Machine (LightGBM) algorithm with good performance (the area under the curve value > 0.75). The 
microRNA-transcription factor-messenger RNA network revealed that homeobox A9 (HOXA9) and Tet methylcytosine 
dioxygenase 1 (TET1) could target SLC31A1 and LIAS in AF. Functional enrichment analysis indicated that cuproptosis 
might be connected to immunocyte activities. Immunocyte infiltration analysis using the CIBERSORT algorithm 
suggested a greater level of neutrophils in the AF group. According to the outcomes of Spearman’s rank correlation 
analysis, there was a negative relation between SLC31A1 and resting dendritic cells and eosinophils. The study found 
a positive relationship between LIAS and eosinophils along with resting memory CD4+ T cells. Conversely, a negative 
correlation was detected between LIAS and CD8+ T cells and regulatory T cells.

Conclusions This study successfully constructed a cuproptosis-related diagnostic model for AF based on the 
LightGBM algorithm and validated its diagnostic efficacy. Cuproptosis may be regulated by HOXA9 and TET1 in AF. 
Cuproptosis might interact with infiltrating immunocytes in AF.
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      Background
Atrial fibrillation (AF) is a common cardiac arrhythmia 
in healthcare facilities, with a global prevalence exceed-
ing 43 million individuals [1]. AF is a substantial risk fac-
tor for ischemic stroke, as it increases the probability of 
stroke by five times and is responsible for approximately 
one-third of all strokes [2–4]. Furthermore, strokes 
among subjects with AF are connected with elevated 
mortality compared to strokes in individuals without 
AF [5]. It is known that the administration of oral anti-
coagulation (OAC) could significantly mitigate the risk 
of AF-related stroke [6, 7]. However, since AF can escape 
traditional monitoring techniques due to its often asymp-
tomatic and paroxysmal nature [8], leading to delayed 
onset of OAC, ischemic stroke is often the initial sign of 
AF [9]. Therefore, novel diagnostic approaches supple-
menting the current methods for the timely detection of 
AF are urgently required.

The pathophysiological pathways for the beginning and 
perpetuation of AF are extremely complex. There is a 
growing body of evidence suggesting that genetic factors 
are a significant contributor to the development of AF. 
Genome-wide association studies have identified approx-
imately 140 genetic loci that are associated with AF [10]. 
Recently, the rapid advancement in microarray technol-
ogy has enabled the identification of gene biomarkers 
associated with AF [11, 12], enabling the development 
of new diagnostic models based on genes for diagnosing 
AF. Additionally, electrical and structural remodeling, 
the predominant mechanism underlying AF, has been 
associated with various types of cell death, such as fer-
roptosis, necroptosis, apoptosis, and autophagy [13–16]. 
Recently, Tsvetkov et al. introduced a new form of cel-
lular death known as cuproptosis, which is triggered by 
excessive accumulation of copper (Cu) [17]. Grandis et al. 
reported that Wilson’s disease (WD), a disease resulting 
from abnormal Cu metabolism, induced a higher risk of 
AF [18], which may be a consequence of myocardial Cu 
deposition [19]. Significantly, Cu is involved in immunity 
[20].

The immune response and inflammation are two cru-
cial mechanisms in AF pathogenesis. Numerous inflam-
matory biomarkers, including interleukins, C-reactive 
protein, and tumor necrosis factor-α, have been associ-
ated with AF [21]. Relevant studies revealed a vital role 
of the immunocyte infiltration of atrium in the pathogen-
esis of AF [22]. In summary, it is reasonable to consider 
that cuproptosis is tightly connected to the pathogenesis 
of AF. Therefore, the establishment of a gene signature 
linked to cuproptosis may provide the foundation to fur-
ther investigate the association between AF and cupro-
ptosis, which can shed new light on the diagnosis and 
management of individuals with AF.

Machine learning (ML), involving procedures that 
learn to make decisions from data, demonstrated suc-
cess and scalability in the diagnosis and prognosis of 
AF [23]. Ensemble learning (EL) is a subfield of ML. 
The utilization of EL algorithms in computational biol-
ogy has become more prevalent as a result of their dis-
tinct benefits in managing limited sample sizes, intricate 
data constructions, and high-dimensional data [24]. To 
our knowledge, the application of EL algorithms such as 
Random Forests (RF) [25], eXtreme Gradient Boosting 
(XGBoost) [26], and Light Gradient Boosting Machine 
(LightGBM) [27] has not yet been reported for the diag-
nostic gene signature of AF. RF algorithm allows pre-
dictors to be ranked according to their importance in 
a regression or classification problem [28]. XGBoost 
and LightGBM algorithms are both based on gradient-
boosting tree-based methods. XGBoost could analyze 
feature importance internally throughout the learning 
process and provide scores for all features. The Light-
GBM algorithm exhibits superior performance compared 
to XGBoost, with notable enhancements in performance, 
training speed, and accuracy [29].

This study aims to discover the association between 
cuproptosis-associated genes and AF, investigate the 
diagnostic importance of cuproptosis-associated gene 
signature based on the LightGBM algorithm, study the 
correlations between cuproptosis and immunocyte 
infiltration, and construct the microRNA (miRNA)-
transcription factor (TF)-messenger RNA (mRNA) regu-
latory network of the genes. The analysis process of this 
investigation is illustrated below (Fig. 1).

Materials and methods
Acquisition and preprocessing of datasets
This study employed “atrial fibrillation” as the designated 
keyword, specified the study organism as “Homo Sapi-
ens”, and identified the study type as “Expression pro-
filing by array”. Subsequently, it conducted a thorough 
exploration of the atrial fibrillation-associated datasets 
within the Gene Expression Omnibus (GEO) database 
(https://www.ncbi.nlm.nih.gov/geo/). Finally, the matrix 
of expression for five unique datasets, namely GSE79768, 
GSE31821, GSE41177, GSE14975, and GSE115574 
(Table 1), was obtained from the GEO repository. Sam-
ples of atrial tissue from sinus rhythm (SR) controls and 
patients with AF were selected for analysis. The Affyme-
trix Human Genome U133 Plus 2.0 Array (GPL570) was 
utilized to annotate all five datasets. The conversion of 
probes in each dataset was performed utilizing annota-
tion files with ActivePerl (5.18.4) to obtain correspond-
ing gene symbols. GSE14975 was first transformed into 
log2 transformed first to ensure consistency with the 
other four datasets, which had been preprocessed with 
log2 transformation before. In order to combine these 

https://www.ncbi.nlm.nih.gov/geo/
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five datasets as a metadata cohort, the batch effect should 
be removed. Batch normalization was performed for the 
merged expression data of five datasets in R (4.1.0) with 
the “sva” package(3.40.0) [30], and the ComBat method 
was used to normalize the expression values from differ-
ent datasets [31]. TableS1 presents that 13 cuproptosis-
related genes were collected from prior research [17]. 
Cuproptosis-related gene matrix was extracted from the 
metadata cohort based on the cuproptosis-related genes 
using R (4.1.0).

Cuproptosis-related gene selection utilizing RF and 
XGBoost algorithms
To identify cuproptosis-related diagnostic variables 
tightly related to AF, RF, and XGBoost, algorithms were 
implemented in the cuproptosis-related matrix. RF 
algorithm was conducted to compute the importance 
score with 1000 classification trees constructed initially 
using the “randomForest” package (4.6–14) [28]. Subse-
quently, the optimal number of trees to grow (ntree) was 
determined according to the minimum error rate. The 

features with Gini importance ranked as the top 3 were 
considered. XGBoost algorithm was implemented with 
parameters set as “the learning rate (eta) = 0.3, maximum 
depth of a tree (max_depth) = 6, max number of boosting 
iterations (nrounds) = 10” through the “xgboost” pack-
age (1.5.0.2, https://github.com/dmlc/xgboost). The fea-
tures with relative Gain-importance ranking top 3 were 
selected. Finally, the overlapping cuproptosis-related 
genes from the two algorithms were selected to establish 
the diagnostic gene signature, and the Venn diagram was 
produced utilizing VENNY 2.1 (https://bioinfogp.cnb.
csic.es/tools/venny/).

The diagnostic gene signature construction and validation
The present study artificially split the cuproptosis-
related matrix into two sets: the training set containing 
GSE14975, GSE31821, GSE41177, and GSE79768, and 
the validation set containing GSE115574. The cupro-
ptosis-related genes selected by RF and XGBoost algo-
rithms were submitted to the LightGBM algorithm 
to build the diagnostic gene signature in training set 

Table 1 Details of the five datasets
Series accession Experiment type Sample size 

(selected/total)
Sample size (AF/
SR)

Contributors Country Last up-
date date

GSE14975 Expression profiling by array 10/10 5/5 Adam O, et al. Germany 2019/3/25
GSE31821 Expression profiling by array 5/6 3/2 Morel E, et al. France 2019/3/25
GSE41177 Expression profiling by array 38/38 32/6 Yeh Y, et al. China (Taiwan) 2019/3/25
GSE79768 Expression profiling by array 26/26 14/12 Tsai FC, et al. China (Taiwan) 2019/3/25
GSE115574 Expression profiling by array 59/59 28/31 Deniz GC, et al. Turkey 2021/12/13

Fig. 1 Flowchart of this study
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utilizing the “lightgbm” package (3.3.2, https://github.
com/Microsoft/LightGBM). The optimal parameters of 
a LightGBM-based model, including minimal sum Hes-
sian in one leaf (min_sum_hessian_in_leaf ), L1 regular-
ization (lambda_l1), L2 regularization (lambda_l2), and 
the ratio of structures randomly chosen on every itera-
tion (feature_fraction), were determined based on the 
minimum square loss during the process of training. 
Finally, the diagnostic gene signature was built with the 
optimal parameters and other parameters set as “eta = 0.1, 
nrounds = 100” and validated in the validation set.

Evaluation of the LightGBM-based Diagnostic Gene 
signature
The efficiency of the diagnostic gene signature according 
to LightGBM was assessed utilizing the area under the 
curve (AUC) of receiver operator characteristic (ROC) 
and precision-recall (PR) curves. Specifically, the ROC-
AUC and PR-AUC were utilized for this purpose. ROC 
curves were generated by the “pROC” package (1.18.0) 
[32], while PR curves were developed through the 
“ggplot2” package [33]. In general, an AUC value > 0.75 
was used as a threshold for good discriminating capacity.

Functional Enrichment Analysis through Gene Set 
Enrichment Analysis (GSEA)
In the metadata cohort, GSEA [34] was implemented 
in the metadata cohort through the “clusterProfiler” 
package (4.0.5) [35] to discover the functional diver-
gence between AF and SR. Gene ontology (GO)-bio-
logical progress (BP), Kyoto Encyclopedia of Genes and 
Genomes (KEGG), and Hallmark enrichment analysis 
were performed, respectively. The reference gene sets 
“h.all.v7.5.1.symbols.gmt”, “c2.cp.kegg.v7.5.1.symbols.
gmt”, and “c5.go.v7.5.1.symbols.gmt” were obtained from 
Molecular Signatures Database (MSigDB, https://www.
gsea-msigdb.org/gsea/msigdb/index.jsp). The signifi-
cance threshold was established as an adjusted P-value 
(adj.p) of less than 0.05 and a false discovery rate (FDR) 
of less than 0.25.

Interactions between cuproptosis-related genes and 
immunocyte infiltration
The CIBERSORT algorithm [36] was performed to detect 
the relative proportions of 22 forms of infiltrating immu-
nocytes (LM22) in patients with AF. The CIBERSORT 
algorithm was run using the LM22 gene set at 1000 
permutations. The p < 0.05 served as the criteria for the 
inclusion of samples. The Wilcox assessment was adopted 
to compare the variations in the proportions of immuno-
cytes among AF patients and SR controls. A statistical 
significance level of p < 0.05 was considered acceptable. 
Correlation analysis between the cuproptosis-associated 
genes selected by EL algorithms and Spearman’s rank 

correlation analysis was utilized to conduct an immune 
response. Given that the |correlation coefficient (R)| < 0.2 
indicates no correlation [37], it is necessary to set the cri-
terion for the significance of correlation analysis as |R| ≥  
0.2 and p < 0.05.

Construction of MicroRNA (miRNA)-Transcription factor 
(TF)-messenger RNA(mRNA) network
The genes associated with Cuproptosis, as identified 
by two EL algorithms, were subjected to analysis utiliz-
ing version 1.14.0 of the “multiMiR” package [38]. This 
analysis aimed to identify miRNAs in verified miRNA-
target databases (miRecords, miRTarBase, and TarBase) 
as well as anticipated miRNA-target databases (DIANA-
microT, ElMMo, MicroCosm, miRanda, miRDB, PicTar, 
PITA, and TargetScan), respectively. To improve the 
accuracy of prediction, only miRNAs fished by at least 
three predicted or two verified databases were retained. 
Meanwhile, TFs targeting cuproptosis-related genes 
were predicted using the “TF perturbations followed by 
expression table” module in Enrichr (https://maayanlab.
cloud/Enrichr/) [39]. The adj.p < 0.05 served as a crite-
rion for the inclusion of TFs, and the miRNA-TF-mRNA 
network was visualized and analyzed by the Cytoscape 
program (3.8.2) after identifying the modulatory relation-
ships of miRNA-TF-mRNA [40].

Statistical analysis
The statistical analyses were performed utilizing R (ver-
sion 4.1.0). A significant difference is typically denoted by 
p < 0.05.

Results
Batch normalization of data
In the analysis of five datasets, principal component anal-
ysis (PCA) was applied to investigate the sample cluster-
ing patterns before and after batch normalization. Before 
the batch normalization, the specimens were collected in 
batches depending on the top two principal components 
(PCs, Fig.  2A). Conversely, the scatter plot of normal-
ized data suggested that the batch effect was successfully 
removed(Fig. 2B).

Progression of the cuproptosis-associated diagnostic gene 
signature
The cuproptosis-related matrix contained 12 cupro-
ptosis-related genes since glycine cleavage system pro-
tein H (GCSH) did not exist in the metadata cohort. 
RF algorithm identified three features, including lipoic 
acid synthetase (LIAS), ATPase copper transporting 
Alpha (ATP7A), and solute carrier family 31 member 1 
(SLC31A1) (Fig.  3A–B). Meanwhile, XGBoost selected 
three cuproptosis-related genes, including SLC31A1, 
LIAS, and dihydrolipoamide s-succinyltransferase 

https://github.com/Microsoft/LightGBM
https://github.com/Microsoft/LightGBM
https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
https://maayanlab.cloud/Enrichr/
https://maayanlab.cloud/Enrichr/
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(DLST, Fig. 3C). The two overlapping features (SLC31A1, 
LIAS), which were tightly related to AF, were ultimately 
selected to build the diagnostic gene signature (Fig. 3D). 
During the model training procedure, the optimal 
parameters of LightGBM-based model were finally deter-
mined as “lambda_l1 = 0, lambda_l2 = 1, min_sum_hes-
sian_in_leaf = 0, feature_fraction = 0.8”. The diagnostic 
gene signature with optimal parameters was validated in 
the validation set.

Diagnostic efficacy of the cuproptosis-related diagnostic 
gene signature
AUC-ROCs only compare the true- and false-positive 
rates, which means that AUC-ROCs only depict the 
capability of signature to discriminate between AF and 
SR. However, the signature is expected to have bet-
ter performance in identifying AF but not SR in clinical 
scenarios. Consequently, PR curves comparing true and 
predicted positives were employed to assess the signature 
performance. The value of ROC-AUCs and PR-AUCs in 
both training and validation sets was higher than 0.75 
(Fig. 4A–B), indicating that the signature had a good util-
ity for discriminating between AF and SR, and performed 
a good separation that specifically mapped to AF.

Functional enrichment analysis
To comprehensively understand the variations in gene 
roles and mechanisms between groups characterized by 
the cuproptosis-related diagnostic gene signature, GSEA 
was conducted. Since the cuproptosis-related diagnostic 
gene signature displayed a good separation specifically 
mapped to AF, the functional annotations enriched in 
the AF group were valued. In GO-BP enrichment analy-
sis, BP terms were significantly enriched in the immune 

response, including activation of the immune response, 
immune response-regulating signaling mechanism, 
immune response-regulating cell surface receptor sig-
naling pathway, positive regulation of immune response, 
and leukocyte migration (Fig.  5A). KEGG enrichment 
analysis revealed that remarkably enriched pathways in 
AF were mainly immunocyte-related, such as Fc gamma 
receptor (Fc gamma R)-mediated phagocytosis, chemo-
kine signaling mechanism, intestinal immune network 
for immunoglobulin A (IgA) production, Leishmania 
infection and lysosome (Fig.  5B). Meanwhile, Hallmark 
terms significantly enriched in AF were allograft rejec-
tion and complement, which were tightly related to 
immunity (Fig. 5C).

In summary, the findings demonstrate that the cupro-
ptosis-related diagnostic signature may be tightly related 
to the biological activities of immunocytes, which has an 
indispensable function in AF pathogenesis.

Immunocyte infiltration and correlation analysis
Depending on the functional enrichment analysis out-
comes, the CIBERSORT procedure was employed to 
quantify the composition of 22 forms of immunocytes 
between the AF and SR groups categorized by the cupro-
ptosis-related diagnostic gene signature. The outcomes 
exhibited that neutrophil infiltration was significantly ele-
vated in AF patients (Fig.  6A–B). Moreover, correlation 
analysis was conducted between the two cuproptosis-
related genes belonging to the diagnostic signature and 
infiltrating immunocytes. SLC31A1 was negatively asso-
ciated with resting dendritic cells (R = -0.27, p = 0.015) 
and eosinophils (R = -0.28, p = 0.012, Fig. 6 C and 7 A–B). 
LIAS was positively correlated with eosinophils (R = 0.24, 
p = 0.028) and resting memory CD4+ T cells (R = 0.37, 

Fig. 2 Scatter-plot of PCA. (A) Before batch normalization. (B) After batch normalization
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p = 8× 10−4), but negatively related to CD8+ T cells (R = 
-0.3, p = 0.0075) and regulatory T cells (Tregs, R = -0.27, 
p = 0.015, Figs. 6D and 7 C–F).

Regulatory Network of cuproptosis-related genes
The miRNA-TF-mRNA network containing 2 mRNAs, 
22 miRNAs, and 22 TFs was constructed (Fig. 8). In the 
network, SLC31A1 mRNA and LIAS mRNA were tar-
geted by homeobox A9 (HOXA9) and Tet methylcytosine 
dioxygenase 1 (TET1).

Discussion
Multiple mechanisms, including genetic factors, various 
types of cell death, immunocyte infiltration, and inflam-
mation, are connected to the incidence and development 
of AF. Up to now, the diagnosis of AF has still been a 
challenge because it is often paroxysmal and asymptom-
atic in clinics. Gaining more insight into the underlying 
mechanism of AF would enable novel methods to diag-
nose AF. Tsvetkov et al. reported that the binding of Cu 
to lipoylated ingredients in the tricarboxylic acid cycle 

Fig. 3 Feature selection with RF and XGBoost algorithms. (A) Relationship between the error rate and the number of classification trees. The error rate is 
minimum when ntree = 105. (B) Gini-importance of the 12 cuproptosis-related genes. (C) Relative Gain-importance of the 12 cuproptosis-related genes. 
(D) Venn plot demonstrating two features shared by RF and XGBoost algorithms
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Fig. 5 Functional analysis by GSEA. (A) Top 5 GO functions. (B) Top 5 KEGG pathways. (C) Top 5 Hallmark terms

 

Fig. 4 PR and ROC curves of the diagnostic gene signature. (A) Training set. (B) Validation set
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causes cuproptosis, a recently recognized type of cell 
death. [17]. Although previous studies found that not 
only Cu itself but also WD, a Cu toxicity disease, were 
related to AF [18, 41], there are still no studies avail-
able to suggest any explainable pathogenesis in detail of 
Cu triggering or maintaining AF. Thus, the purpose of 
this investigation is not only to identify a novel diagnos-
tic gene signature that may be available to assist clinical 
diagnosis of AF but also to investigate the relationship 
between Cu and AF from the aspect of cuproptosis.

This investigation is the first to identify the diagnostic 
gene signature connected to cuproptosis through bioin-
formatics methods integrating with EL algorithms, such 
as RF, XGBoost, and LightGBM algorithms. A cupro-
ptosis-related diagnostic gene signature featuring two 
genes (SLC31A1 and LIAS) was finally established and 
validated with good efficacy in identifying AF, specifi-
cally with the value of ROC-AUCs and PR-AUCs exceed-
ing 0.75. In contrast, many medical investigations are 
further required to verify the diagnosis significance of 
cuproptosis-related diagnostic gene signature. SLC31A1, 

also known as “copper transporter 1 (CRT1)”, encodes 
the protein serving as an increased-affinity Cu importer 
in the cell membrane. Kim et al. stated that the cardiac-
specific knockout of SLC31A1 resulted in morphological, 
histological, molecular, and physiological hallmarks of 
cardiomyopathy [42], indicating that SLC31A1 is respon-
sible for preserving the typical cardiac structure and 
function. LIAS encodes an iron-sulfur enzyme located 
in the mitochondrion, catalyzing the biosynthesis of 
lipoic acid. Previous studies reported that alteration of 
LIAS gene expression affected the development of ath-
erosclerosis [43–45], which is a chronic inflammatory 
disease and one of the risk factors for AF [46]. Therefore, 
SLC31A1 and LIAS are likely to impact the AF patho-
genesis. Since the direct function of the two genes in AF 
has been little explored, further studies may focus on 
the underlying mechanism linking the two cuproptosis-
related genes and AF.

In the miRNA-TF-mRNA regulatory network, HOXA9 
and TET1 could simultaneously regulate SLC31A1 
mRNA and LIAS mRNA. A new investigation by Cai 

Fig. 6 Immunocyte infiltration and correlation analysis. (A) Bar plot displaying the composition of 22 forms of immunocytes between AF and SR samples 
displayed by different colors. (B) Grouped violin plot comparing 22 types of immunocytes between AF patients and SR controls. (C) Correlation between 
SLC31A1 and 22 types of immunocytes. (D) Correlation between LIAS and 22 types of immunocytes
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Fig. 7 Correlation analysis of the two genes associated with Cuproptosis and their corresponding infiltrating immunocytes. (A–B) SCL31A1. (C–F) LIAS
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et al. revealed that HOXA9, a member of the Homeo-
box gene family encoding several greatly conservative 
progressive transcription factors, could promote car-
diomyocyte hypertrophy [47], which is one of the most 
important structural remodeling features in AF [48]. 
TET1 is a 5-methylcytosine hydroxylase that initiates the 
DNA demethylation process [49]. Zhou et al. informed 
that TET1 was related to the direct cardiac reprogram-
ming of fibroblasts into cardiomyocytes in humans [50]. 
Since atrial fibrosis involving an abnormal proliferation 
of cardiac fibroblasts and loss of cardiomyocytes is a 
characteristic of structural remodeling in AF [51], TET1 

can serve as a crucial regulatory point to attenuate struc-
tural remodeling by direct cardiac reprogramming in AF. 
In view of the potential association between the two TFs 
and AF, it seems reasonable to assume that HOXA9 and 
TET1 might target SLC31A1 mRNA and LIAS mRNA in 
the pathogenesis of AF by regulating cuproptosis. How-
ever, there is still no study focusing on the interactions 
between the two TFs and the two cuproptosis-related 
genes, so further studies will be needed.

The phenomenon of cuproptosis has not been exten-
sively investigated in scientific research. The results 
of GSEA indicated that various immunocyte-related 

Fig. 8 The miRNA-TF-mRNA network of cuproptosis-related genes. Blue circles represent miRNAs, green diamonds represent TFs, and red triangles repre-
sent mRNAs. The edges represent the relationship of miRNA-mRNA or TF-mRNA. The greater the degree of the node, the larger the node

 



Page 11 of 13Wang et al. Hereditas          (2023) 160:34 

functions and mechanisms were significantly enriched 
in the AF group, which could be specifically identified 
through the cuproptosis-related gene signature with 
good performance. Therefore, it is a justifiable hypothesis 
that cuproptosis may influence the structure of immuno-
cytes infiltrating the atria.

The proportion of neutrophils among individuals with 
AF was found to be more elevated in comparison to the 
SR control group. Neutrophils are the most abundant 
type of leukocyte and have been linked to the regulation 
of cardiovascular inflammation [52]. The neutrophil-to-
lymphocyte ratio elevation is related to the incidence 
and recurrence of AF [53]. Furthermore, studies showed 
that neutrophils infiltrating the myocardial interstitium 
release myeloperoxidase and reactive oxygen species, 
which induce atrial fibrosis and fibrillation [54]. Further-
more, Babu et al. revealed that the function of neutro-
phils was sensitive to Cu status [55]. The present findings 
coincide with previous studies, not only confirming the 
accuracy of findings but also suggesting the complexity 
between cuproptosis and neutrophils in AF.

The study conducted a correlation analysis between 
two genes associated with cuproptosis and infiltrating 
immunocytes. The findings demonstrated that SLC31A1 
exhibited a negative relationship with eosinophils and 
resting dendritic cells. The study found a positive correla-
tion between LIAS and eosinophils in addition to resting 
memory CD4+ T cells, while a negative relationship was 
detected between LIAS and CD8+ T cells and Tregs. A 
previous study by Tian et al. indicated that LIAS overex-
pression led to a reduction in CD4 + T cell infiltration and 
an increase in Treg number in peripheral blood in ath-
erosclerosis [45], but similar investigations are not car-
ried out in the case of AF. Given the lack of research, the 
sophisticated interactions between cuproptosis-related 
genes and immunocytes should be investigated in depth 
on the basis of the assumption mentioned previously.

It is crucial to take into account the restrictions of this 
investigation while interpreting the outcomes. First, the 
findings were derived exclusively from public databases 
using bioinformatics methods. Even though the present 
results were validated with a validation set, further clini-
cal investigations with large sample sizes are essential 
for fully evaluating the feasibility of results. Second, this 
investigation represents the initial attempt to elucidate 
the correlation between cuproptosis and AF. Currently, 
research focusing on cuproptosis is still scarce. More in 
vivo or in vitro functional experiments are required to 
explore the underlying pathways that link cuproptosis 
to AF based on the results of this investigation. Third, a 
bioinformatics approach was used in this study to exam-
ine miRNA-TF-mRNA triple interactions associated with 
cuproptosis-related AF development. Nevertheless, the 

obtained miRNA-TF-mRNA interactions still require 
further experimental verification.

Conclusion
In summary, this investigation demonstrated that cupro-
ptosis was closely related to AF. A 2-gene diagnostic sig-
nature that includes cuproptosis-related genes (SLC31A1 
and LIAS) based on LightGBM was constructed, and its 
good performance in the specific recognition of AF was 
validated. Cuproptosis may be regulated by HOXA9 and 
TET1 in AF. Moreover, cuproptosis and immunity may 
orchestrate the pathogenesis of AF. This comprehensive 
analysis provides the possibility to improve the diagnosis 
for patients with AF and provides a theoretical base for 
upcoming research on the associations between immu-
nity and cuproptosis-related genes in AF.
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