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Abstract
Background RNA methylation modifications, such as N1-methyladenosine/N6-methyladenosine /N5-methylcytosine 
(m1A/m6A/m5C), are the most common RNA modifications and are crucial for a number of biological processes. 
Nonetheless, the role of RNA methylation modifications of m1A/m6A/m5C in the pathogenesis of renal interstitial 
fibrosis (RIF) remains incompletely understood.

Methods Firstly, we downloaded 2 expression datasets from the GEO database, namely GSE22459 and GSE76882. 
In a differential analysis of these datasets between patients with and without RIF, we selected 33 methylation-related 
genes (MRGs). We then applied a PPI network, LASSO analysis, SVM-RFE algorithm, and RF algorithm to identify key 
MRGs.

Results We eventually obtained five candidate MRGs (WTAP, ALKBH5, YTHDF2, RBMX, and ELAVL1) to forecast the risk 
of RIF. We created a nomogram model derived from five key MRGs, which revealed that the nomogram model may 
be advantageous to patients. Based on the selected five significant MRGs, patients with RIF were classified into two 
MRG patterns using consensus clustering, and the correlation between the five MRGs, the two MRG patterns, and 
the genetic pattern with immune cell infiltration was shown. Moreover, we conducted GO and KEGG analyses on 768 
DEGs between MRG clusters A and B to look into their different involvement in RIF. To measure the MRG patterns, a 
PCA algorithm was developed to determine MRG scores for each sample. The MRG scores of the patients in cluster B 
were higher than those in cluster A.

Conclusions Ultimately, we concluded that cluster A in the two MRG patterns identified on these five key 
m1A/m6A/m5C regulators may be associated with RIF.
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Introduction
Low public awareness, high prevalence, high medical 
expenses, and a poor prognosis are all features of the 
significant public health threat known as chronic kidney 
disease (CKD), which affects people all over the world 
[1]. 697.5  million individuals worldwide, or 9.1% of the 
population, had CKD in 2017 [2]. Renal interstitial fibro-
sis (RIF) is a common pathological response to the wide-
spread incidence of CKD. RIF is defined by the abnormal 
accumulation of extracellular matrix in the interstitial 
compartment situated between the tubules and peritu-
bular capillaries, leading to tissue damage and functional 
impairment. Ultimately, this accumulation of matrix 
results in renal failure and eventual mortality [3, 4]. 
Unfortunately, there are no targeted, definitive, and effec-
tive treatments for RIF, so early recognition of patients at 
high risk for RIF is above all important for early preven-
tion, delay, and reversal of the disease.

RNA modifications that occur in cells play an impor-
tant role in regulating their stability, processing, trans-
port, and gene expression and are the central switch in 
RNA metabolism [5]. RNA methylation, as the most 
typical modification in RNA modification, can be clas-
sified into various forms, including m1A, m6A and m5C, 
depending on the methylation site [6, 7]. Similar to his-
tone modifications and DNA epigenetics, RNA meth-
ylation modifications can be installed, removed, and 
recognized by specific proteins called “writers,“ “eras-
ers,“ and “readers”. The methylation modification known 
as m6A is formed by methylation of the sixth N atom of 
RNA adenine with the assistance of several m6A writers, 
including METTL3, METTL14, and WTAP [8–10]. Con-
versely, demethyltransferases (FTO and ALKBH5) that 
remove m6A, called m6A erasers, work with m6A writers 
to maintain a dynamic balance between mRNA methyla-
tion and unmethylation in cells [11]. YTHDF1/2/3 and 
YTHDC1/2 (YTH structural domain family proteins), 
as a category of RNA-binding proteins, recognize m6A 
modification sites that lead to changes in RNA metabo-
lism [12, 13]. Under healthy circumstances, adenine is a 
positively electrostatically methylated nucleotide, and the 
m1A modification is a reversible methylation modifica-
tion of the first nitrogen (N1) atom of adenine in RNA 
[14].

Similar to m6A, the m1A modification process is also 
regulated by m1A writers, erasers, and readers [11]. The 
m5C is a methylation alteration on the fifth carbon atom 
of cytosine that is extensively prevalent in a number of 
RNAs, including mRNA, tRNA, rRNA, and lncRNA. 
More than 10 RNA m5C methyltransferases have been 
discovered so far, including DNMT2, NSUN, and 
TRDMT [15]. The m5C site is primarily recognized by 
the reader proteins YBX1 and ALYREF [16, 17]. Erasers 
of m5A have not been identified, with only partial reports 

suggesting that the TET family has the potential to func-
tion as RNA demethylases [18]. In conclusion, the most 
common RNA methylation modifications have their own 
unique regulators and complex regulatory mechanisms, 
and they play a crucial role in living organisms. Abnor-
mal RNA modification can promote the occurrence and 
development of various tumors by regulating cell growth, 
differentiation, migration, and drug resistance, such as 
gastric cancer, liver cancer, colorectal cancer, etc. [11].

The alteration of the apparent transcriptional pro-
file of m6A in UUO mouse’s kidney signifies the crucial 
role played by m6A in the regulation of renal interstitial 
RIF [19]. In their study, Cui and colleagues utilized m6A 
methylation profiling to elucidate the role of m6A meth-
ylation in modulating oxidative stress and cytoplasmic 
metabolism during the development of liver fibrosis. 
Notably, their findings revealed distinct patterns of m6A 
methylation that were enriched in immune response and 
apoptosis, which were associated with fibrosis regression 
[20]. Moreover, Li et al. discovered that the activation 
of cardiac fibroblasts is closely associated with elevated 
expression of METTL3. Cui and colleagues utilized m6A 
methylation profiling to elucidate the role of m6A meth-
ylation in modulating oxidative stress and cytoplasmic 
metabolism during the development of liver fibrosis [21]. 
Notably, their findings revealed distinct patterns of m6A 
methylation that were enriched in immune response and 
apoptosis, which were associated with fibrosis regression 
[22].Unfortunately, the function of the m1A/m6A/m5C 
regulators in RIF is still unknown.

In the present study, we examined the roles of 
m1A/m6A/m5C regulators in the diagnosis and sub-
type classification of RIF using the GSE22459 and 
GSE76882 datasets in the GEO. We are based on five key 
m1A/m6A/m5C regulators (ALKBH5, ELAVL1, RBMX, 
WTAP, and YTHDF2). A genetic model for predict-
ing RIF susceptibility was established, and patients were 
shown to derive good clinical benefit from this model. 
Furthermore, we constructed two distinct MRG mod-
els that closely correlate with the expression of genes 
implicated in RIF, suggesting that MRGs hold promise 
as diagnostic and subtype classification markers for RIF, 
with potential implications for the early intervention and 
treatment of this disease.

Materials and methods
Acquisition of data
The GSE22459 and GSE76882 datasets from the GEO 
database contain 99 healthy patients without RIF and 
135 patients with RIF [23, 24]. In light of the existing lit-
erature, we have identified a total of 48 genes responsible 
for regulating m1A, m6A, and m5C modifications (Sup-
plementary Table  1) [25–27]. We employed a two-fold 
approach to preprocessing our data. Firstly, we applied 
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a log2 transformation to each dataset and normalized 
the resulting expression values separately. Secondly, we 
merged the two datasets and utilized the “ComBat” func-
tion, a popular batch correction algorithm, to eliminate 
the batch effect. This process ensured that any system-
specific variations between the two datasets were effec-
tively removed, resulting in a more robust and reliable 
dataset for downstream analysis [28]. To identify the 
MRGs associated with RIF, we conducted differential 
analysis between patients with and without RIF. Specifi-
cally, we utilized the R package “limma” to analyze the 
differentially expressed MRGs between the two groups, 
adopting the Wilcoxon test with a significance threshold 
of p value less than 0.05.

Identification of key MRGs
To model RIF, we applied the protein-protein interac-
tion (PPI) network, least absolute shrinkage and selec-
tion operator (LASSO) analysis, support vector machine 
recursive feature elimination (SVM-RFE) algorithm, and 
random forest (RF) algorithm to identify key MRGs. To 
establish the PPI network, we initially imported 48 genes 
previously identified as m1A/m6A/m5C regulators into 
the STRING protein database. We subsequently applied 
a minimum interaction score threshold of 0.4, followed 
by utilization of cytoscape and the MCODE algorithm 
to identify the central network and hub genes [29, 30]. 
A higher interaction score indicated a more definite 
protein-protein relationship; an interaction score of 0.4 
was the default parameter in the STRING database, and 
most previous research had been screened using this as 
the threshold [31, 32]. The LASSO analysis is a dimen-
sionality reduction algorithm that exhibits superior per-
formance compared to regression analysis [33]. We used 
a 10-fold cross-validation lasso analysis to screen for hub 
genes. The SVM-RFE algorithm is a machine learning 
technique that involves the use of SVMs for generating 
feature vectors and iteratively eliminating them to iden-
tify the optimal set of variables [34]. The RF algorithm is 
a component-based supervised learning method, often 
viewed as an extension of decision trees [35]. We used 
the “random forest” package in R software to build a RF 
model (ntree = 500) to select key regulator genes from dif-
ferentially expressed MRGs. Finally, the hub MRGs were 
identified by taking the intersection of the four analysis 
methods.

Establishment of a nomogram model
We developed a nomogram model utilizing five candidate 
MRGs and utilized the “rms” package in R to predict the 
incidence of interstitial fibrosis in patients. Furthermore, 
we created calibration curves to examine the agreement 
between projected and actual results. Finally, to deter-
mine whether the model would benefit patients, we ran 

a decision curve analysis (DCA) and exhibited clinical 
effect curves [36, 37].

Identification of molecular subtype
To gain deeper insights into the molecular mechanisms 
of RIF, we employed the consensus clustering algorithm, 
a powerful tool that identifies subgroups of similar pat-
terns within a given dataset. Utilizing the R package 
“Consensus Cluster Plus”, we conducted unsupervised 
clustering analysis to identify the distinct patterns of 
MRGs based on their expression profiles. Through the 
use of resampling techniques, we were able to validate 
the clusters generated and establish the robustness of 
our analyses [38]. The selection of the number of clusters 
involves consideration of three primary criteria: small 
intra-group differences, large inter-group differences, and 
sufficient sample sizes. We employed various methods, 
including consensus matrix plots, consensus cumulative 
distribution function (CDF) plots, relative changes in 
area under the CDF curve, and trace plots, to determine 
the optimal number of clusters. Subsequently, we gener-
ated histograms to visualize the expression differences in 
the five significant MRGs between the two MRG clusters.

Estimation of the genetic profile
In order to quantify the MRG patterns identified from 
our clustering analysis, we employed the principal com-
ponent analysis (PCA) algorithm to calculate the MRG 
scores for each RIF sample. Specifically, we used the first 
and second principal components (PC1 and PC2, respec-
tively) as representative scores for each sample. To com-
pute an MRG score for each RIF patient, we used the 
following equation: MRG Score = Σ(PC1i + PC2i), where 
i represents the expression values of MRGs. This allowed 
us to generate a comprehensive score index that repre-
sented the MRG expression patterns for each RIF patient, 
providing a quantitative basis for subsequent analyses 
and interpretations.

Estimation of the immune cell infiltration
Single-sample gene set enrichment analysis (ssGSEA) has 
been widely used in the field of immunological research 
to quantify the relative abundance of specific immune 
cell populations present within complex biological sam-
ples. As such, ssGSEA has emerged as a powerful tool for 
evaluating the immune microenvironment in various dis-
ease states, including RIF. By analyzing gene expression 
data obtained from RIF patient samples, we were able 
to utilize ssGSEA to establish the abundance of immune 
cells present within each sample [39]. This information 
may contribute towards a better understanding of the 
role that immune cells play in driving RIF pathogenesis, 
and could potentially inform the development of novel 
immunotherapeutic approaches for the treatment of RIF.
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Functional and pathway enrichment analysis
To further investigate the biological significance of our 
findings, we utilized a number of R packages, including 
“clusterProfiler”, “ComplexHeatmap”, “limma”, “color-
space”, “stringi”, and “ggplot2”, to conduct GO and KEGG 
enrichment analyses. These analyses allowed us to iden-
tify the functional and molecular pathways associated 
with the differentially expressed genes (DEGs) between 
the two MRG clusters (A and B) we identified (adjusted 
P value < 0.05) [40, 41]. By examining the enriched path-
ways and functions, we were able to derive a richer 
understanding of the underlying biological mechanisms 
and potential therapeutic targets relevant to RIF.

Results
Landscape of the 48 m1A/m6A/m5C regulators
The present study depicts its research methodology in 
Fig.  1, which showcases the research flow. Additionally, 

Table 1 offers an overview of the primary R packages uti-
lized in this study and the functions they implement. To 
examine the differential expression levels of 48 MRGs 
within patients with and without RIF, we employed the 
“limma” package within R followed by the generation of 
histograms to display the results. We discovered 33 dif-
ferentially expressed MRGs, in which METTL3, WTAP, 
RBMX, YTHDF2, DNMT1, and other regulatory fac-
tors were over-expressed in patients with RIF, whereas 
ALKBH5, ELAVL1, TRMT61B, and other regulatory fac-
tors were down-regulated (Fig.  2A and Supplementary 
Table 2).

Identification of of key MRGs
To further screen for MRGs significantly associated with 
RIF, we used the PPI network, LASSO analysis, SVM-
RFE algorithm, and RF algorithm to identify key regula-
tory genes. Using the String database, we investigated the 

Fig. 1 The research flow
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interaction network of 33 differentially expressed MRGs 
and visualized them using the cytoscape software. We 
obtained 16 MRGs based on interaction scores greater 
than 0.4 and the MCODE algorithm (Fig. 2B). Using the 
LASSO algorithm, we identified 17 MRGs from the 33 
differentially expressed MRGs (Fig.  2C). The 15 MRGs 
were identified by constructing the RF model (Fig.  2D). 
The tenfold cross-validation curve shows that the accu-
racy of SVM-RFE is highest only when we select the 13 
MRGs (Fig. 2E). Finally, we overlapped the results of the 
above three different algorithms and PPI network analy-
sis to obtain five MRGs (ALKBH5, ELAVL1, RBMX, 
WTAP, and YTHDF2) that were significantly associated 
with RIF (Fig. 2F).

Construction of the nomogram
Based on our previous selection of five candidate MRGs, 
we built a nomogram model to predict the incidence of 
RIF (Fig.  3A). The calibration curve demonstrates that 
the nomogram model’s predictiveness is correct (Fig. 3B). 
Nomogram model-based decisions hold potential advan-
tages for RIF patients, as evidenced by the DCA curve 
displaying the red line remaining consistently above the 
gray and black lines within the range of 0 to 1 (Fig. 3C). 
Furthermore, the clinical impact curve shows the nomo-
gram model to possess robust predictive power (Fig. 3D).

Identification of two different MRG patterns
Based on the five significant MRGs, two MRG pat-
terns (MRG clusters A and B) were identified by using 
the “ConsensusClusterPlus” package in R software and 
the consensus clustering method. (Fig.  4A and Supple-
mentary Fig. 1). We then plotted histograms to observe 
the differences in the expression levels of the 5 MRGs 
between these two MRG clusters (Fig.  4B). RBMX, 
WTAP, and YTHDF2 were expressed at higher levels in 
MRGcluster A than in MRGcluster B, while the opposite 

was true for ALKBH5. ELAVL1 expression did not differ 
significantly between MRG clusters A and B. PCA shows 
that the two MRG models can be fully distinguished 
based on these five important MRGs (Fig. 4C). We next 
calculated the immune cell abundance in the RIF samples 
using ssGSEA, and we produced histograms to dem-
onstrate the various immune cell infiltrations between 
the two MRG clusters (Fig.  4D). In MRG cluster A, we 
discovered that activated B cells, activated CD4 T cells, 
activated CD8 T cells, activated dendritic T cells, eosin-
ophils, gamma delta T cells, immature B cells, MDSCs, 
macrophages, mast cells, natural killer T cells, plasmacy-
toid dendritic cells, regulatory T cells, T follicular helper 
cells, type 1 T helper cells, and type 2 T helper cells were 
significantly expressed (p < 0.05). In addition, we evalu-
ated the correlation between the five MRGs and immune 
cells separately and plotted the histogram (Fig.  4E). We 
found that WTAP was positively correlated with many 
immune cells, except CD56 bright natural killer cells, 
CD56 dim natural killer cells, and neutrophils. And 
ALKBH5 was negatively correlated with many immune 
cells, except CD56 dim natural killer cells, and immature 
dendritic cells. We classified the five key MRGs into high 
and low expression groups according to their median 
gene expression levels.

Thereafter, we further evaluated their correlation with 
immune cell infiltration (Fig. 5).

Function and pathway enrichment
A total of 768 DEGs were selected in two MRG patterns 
with thresholds of | logFC | greater than or equal to 0.585 
and an adjusted p value greater than 0.05. We used GO 
and KEGG enrichment analyses to further investigate the 
probable roles and molecular pathways of these DEGs 
in RIF. Biological process (BP) terminology is associated 
with the small molecule catabolic process (GO: 0044282) 
and the organic acid catabolic process (GO: 0016054); 
cellular component (CC) terminology is associated with 
apical plasma membrane (GO: 0016324) and apical part 
of cell (GO: 0045177); molecular function (MF) terms are 
related to secondary active transmembrane transporter 
activity (GO: 0015291) and oxidoreductase activity, act-
ing on CH-OH group of donors (GO: 0016614)(Fig.  6A 
and Supplementary Table 3). KEGG enrichment analy-
sis revealed that DEGs were highly enriched in the leish-
maniasis (hsa05140) and chemokine signaling (hsa04062) 
pathways (Fig. 6B and Supplementary Table 4).

Identification of two distinct genetic patterns and immune 
cell infiltration
To further verify the MRG pattern, patients with RIF 
were divided into different genomic subtypes based on 
768 DEGs using a consistent clustering approach. We 
got two different gene patterns, gene cluster A and gene 

Table 1 An overview of the primary R packages utilized in this 
study and the functions they implement
R package Versions Function
sva 3.44.0 Batch correction

limma 3.52.1 Differential expression 
analysis

glmnet 4.1−4 LASSO analysis

randomForest 4.7–1.1 RF algorithm

caret 6.0–92 SVM-RFE algorithm

venn 1.11 Taking the intersection

rms 6.3−0 Constructing a nomogram 
model

ConsensusClusterPlus 1.60.0 Unsupervised clustering 
analysis

ggplot2 3.4.1 Drawings

clusterProfiler 4.6.1 Enrichment analysis

GSVA 1.44.2 Gene Set Variation Analysis
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cluster B, which corresponded to the grouping of MRG 
patterns (Fig.  6C), while PCA revealed that the two 
gene patterns were fully distinct (Fig.  6E). Figure  6D F 
showed that the differential expression levels of the five 
key MRGs between gene cluster A and gene cluster B 
and the immune cell infiltration between the two gene 
patterns are similar to those in the MRG clusters. This 
again validates the correctness of the consensus cluster-
ing approach to grouping. To compute the MRG cluster, 
we used a PCA algorithm to compare the MRG scores 
between two different MRG clusters or gene clusters. The 
results showed that MRG cluster B, or gene cluster B, had 
a significantly higher MRG score than MRG cluster A, or 
gene cluster A (Fig. 7A). The relationship between MRG 
pattern, gene pattern, and MRG score is visualized in the 
Sankey plot (Fig. 7B).

The role of MRG and gene patterns in RIF
To further investigate the connection between the MRG 
cluster and RIF, we explored the relationship between dif-
ferent clusters and the expression levels of genes closely 
related to the development of RIF, including RTEL1, 
MET, HNF1B, PAX2, TMEM67, CEP290, AGT, COPA, 
CLCN5, and AGTR1. The results showed that the expres-
sion levels of MET, TMEM67, CEP290, and COPA were 
higher in gene cluster A or MRG cluster A, while the rest 
were reversed, suggesting that gene cluster A or MRG 
cluster A is highly associated with RIF characteristics 
(Fig. 7 C and D).

Discussion
RIF is a common pathological manifestation of CKD 
progressing to end-stage renal disease. Its pathogenesis 
is mainly related to renal inflammatory injury, oxidative 
stress, and apoptosis, but the most important pathogen-
esis is the imbalance of extracellular matrix synthesis 
and/or degradation, and excessive deposition in normal 
interstitium and tubules [1, 42, 43]. RNA methylation 
has emerged as a crucial molecular mechanism involved 
in diverse biological pathways, including regulation of 
stem cell homeostasis, cell differentiation, DNA dam-
age response, and gene expression. Moreover, dysregu-
lation of RNA methylation has been implicated in the 
pathogenesis of multiple diseases, such as liver fibrosis, 
colorectal cancer, gastric cancer, bladder cancer, and sev-
eral others [44–46]. However, no study has yet identified 
the role and mechanism of m1A, m6A and m5C modifica-
tions in RIF.

We first identified 33m1A/m6A/m5C regulators by 
differential expression analysis between patients with 
and without RIF. Then we finally obtained 5 key MRGs 
(ALKBH5, ELAVL1, RBMX, WTAP, and YTHDF2) by 
applying RF, LASSO, SVM, and PPI networks. Subse-
quently, a nomogram model was constructed utilizing 5 
MRGs, enabling the prediction of RIF onset. The DCA 
curves suggest that decision-making based on the nomo-
gram model could prove advantageous for patients expe-
riencing RIF. Furthermore, two distinct MRG patterns 
were identified based on the aforementioned 5 MRGs. 
The correlation between immune cell infiltration, and 
these two patterns, and the five MRGs was subsequently 
explored. In between the two MRG patterns, we screened 
an additional 768 DEGs and distinguished two differ-
ent gene patterns using consensus clustering, and inter-
estingly, this gene pattern was grouped in line with the 
MRG pattern.

WTAP is a widespread nuclear protein that localizes 
throughout the nucleoplasm as well as in patches and 
binds specifically to the Wilm’s tumor 1 protein [47]. As 
an essential component of the methyltransferase com-
plex, it can interact directly with METTL3 to recruit 
METTL3-METTL14 heterodimeric complexes to nuclear 
speckles for m6A modification [8]. Moreover, WTAP is 
involved in selective splicing of mRNA and cell cycle reg-
ulation [48]. Wei et al. found that AcSDKP could reduce 
the stability of Ptch1 mRNA by downregulating WTAP 
expression and ultimately exert anti-fibrotic effects [49]. 
A gene on the X chromosome codes for RBMX, a nuclear 
RNA-binding protein with a length of 43 kDa. It supports 
genomic integrity, transcription regulation, and splicing 
at the molecular level and is directly linked to healthy 
development, cancer, and viral infections [50]. Renieri et 
al. used genome sequencing to find mutations truncat-
ing the RBMX gene in lung cancer patients [51]. Accord-
ing to Martinez-Arribas et al., pro-apoptotic Bax gene 
expression and RBMX expression were associated with 
breast cancer [52]. ALKBH5 belongs to the AlkB sub-
family of the 2OG dioxygenase superfamily, also known 
as erasers, and contains a highly conserved DSBH fold 
(also known as the jelly-roll motif ) in its structure, which 
maintains the intracellular homeostasis of m6A modifica-
tions with the assistance of Fe2 + and the cofactor 2OG 
in conjunction with the methyltransferase complex [53]. 
ALKBH5 can affect the development of human malig-
nant diseases by regulating biological processes [54, 
55]. ALKBH5 can contribute to the progression of lung 
fibrosis by directly or indirectly regulating FOXM1 [56]. 
Inhibition of ALKBH5 in hepatic stellate cells attenuates 
radiation-induced liver fibrosis [57].

HuR, the gene product of the ELAVL1 gene, is the 
only member of the entire ELAVL family that is com-
monly expressed as RBPs in all human tissues [58]. 

Fig. 2 Identification of five key MRGs. (A) Landscape of the 48 MRGs in RIF. 
(B) 16 MRGs obtained from the PPI network. (C) 17 MRGs were identified 
by the LASSO analysis. (D) 15 MRGs were identified by the RF model. (E) 
Thirteen MRGs were selected by the SVM-RFE algorithm. (F) Five key MRGs 
(ALKBH5, ELAVL1, RBMX, WTAP, and YTHDF2) were finally obtained after 
applying four algorithm
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HuR contains three RRMs, which are translocated from 
the nucleus to the cytoplasm when exposed to intrinsic 
and/or extrinsic stress and bind to A/U-rich elements in 
the 3’ untranslated region of mRNA to regulate mRNA 
splicing, transport, and stability [59, 60]. A prior inves-
tigation on liver fibrosis revealed that HuR binds to the 
3’UTR of S1PR3 mRNA, thereby enhancing its stability 

through competitive inhibition of miR-30e. This resultant 
regulation of signaling pathways mediated via S1P-S1PR3 
subsequently impacts the migration and differentiation 
of BMSCs into myofibroblasts [61]. Sorafenib attenu-
ates hepatic fibrosis in mice by inducing hepatic stel-
late cell ferroptosis [62]. IAPF overexpression can block 
autophagy in lung fibrosis, and the action is dependent 

Fig. 3 (A) The construction of the nomogram model according to the five candidate MRGs. (B) The predictive ability of the nomogram model as exposed 
by the calibration curve. (C) Decisions based on the nomogram model may benefit patients with RIF. (D) The clinical impact of the nomogram model as 
assessed by the clinical impact curve
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Fig. 4 Consensus clustering of five significant MRGs. (A) Consensus matrices of five significant MRGs for k = 2. (B) A differential expression histogram of 
five noteworthy MRGs in MRG clusters A and B. (C) PCA for the expression profiles of five significant MRGs. (D) Differences in cell infiltration between MRG 
clusters A and B. (E) Connection between infiltrating immune cells and five significant MRGs
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on ELAVL1 [63]. This all suggests a potential role for 
ELAVL1 and HuR in the development of liver fibrosis. 
As the most efficient m6A “reader”, YTHDF2 can tar-
get m6A-containing RNAs through its C-terminal YTH 
structural domain to regulate RNA processing, stabiliza-
tion, and translation [64, 65]. YTHDF2 functions in vari-
ous biological processes, including cancer development, 
inflammatory responses, regulation of hematopoietic 
stem cell self-renewal and differentiation, and initiation 

of pluripotent stem cell generation [64].In conclusion, the 
above five m1A/m6A/m5C regulators had direct or indi-
rect relationships with fibrosis.

The pathogenesis of interstitial fibrosis is strongly con-
nected to abnormalities in the immune system, particu-
larly those related to the regulatory mechanisms of mast 
cells. A significant aspect of this process involves the 
synthesis, storage, and release of reactive renin by mast 
cells, which cleaves angiotensinogen and contributes to 

Fig. 5 Correlation of the expression levels of five key MRGs with immune cell infiltration
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Fig. 6 Consensus clustering of DEGs. (A and B) The GO and KEGG analyses for DEGs. (C) Consensus matrices of DEGs for k = 2. (D) A histogram of differen-
tial expression of the five key MRGs in gene clusters A and B. (E) Differences in immune cell infiltration between gene clusters A and B
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the production of ANG II, a key pro-fibrotic factor asso-
ciated with renal fibrosis. Recent research conducted 
by Veerappan et al. demonstrated that treatment with 
sodium cromoglycate, a mast cell stabilizer, resulted in 
a reduction of collagen deposition and tubulointerstitial 
fibrosis in obstructed kidneys after a 14-day period [66]. 
This finding highlights the critical role of mast cells in the 
development of interstitial fibrosis. According to a study 
by Hirooka et al., Foxp3+-Treg has a protective function 
in the pathophysiology of RIF by activating the L-18R sig-
naling pathway [67]. Wang et al. found by bone marrow 
transplantation experiments that bone marrow-derived 
macrophages, especially M2-type macrophages, could 
transdifferentiate into renal myofibroblasts and promote 
RIF [68]. TGF-β1 is an essential mediator in the patho-
genesis of RIF, with anti-inflammatory and pro-fibrotic 
effects [69]. In fact, TGF-β1 is associated with a variety of 
immune cells, including B cells, CD8 + T cells, regulatory 

CD4 + T cells, and dendritic cells. For example, TGF-β1 
can induce cell cycle arrest in B cells by inhibiting PI3K/
Akt signaling, especially in the G0/G1 phase [70]. In 
addition, TGF-β1 can also indirectly impede B cell pro-
liferation and activation by interacting with regulatory T 
cells [71]. In conclusion, given the importance of TGF-
f1 in the immune cascade response, we know that the 
pathogenesis of RIF is associated with multiple immune 
cell infiltrations.

In our study, two MRG patterns were recognized by 
using a consensus clustering approach on five selected 
key MRGs. The high level of multiple immune cell 
infiltration in MRG cluster A suggests that MRG clus-
ter A may be associated with RIF. The accuracy of the 
aforementioned results was then verified using DEGs 
connected to the gene pattern. By utilizing the PCA algo-
rithm to determine the MRG score for each sample, we 
finally quantified the MRG pattern. Finally, we discovered 

Fig. 7 Role of MRG patterns in the identification of RIF. (A) There were differences in MRG scores between MRG gene clusters A and B and between gene 
clusters A and B. (B) A Sankey diagram showing the relationship between MRG patterns, gene patterns, and MRG scores. (C) Differences in expression 
levels of RTEL1, MET, HNF1B, PAX2, TMEM67, CEP290, AGT, COPA, CLCN5, and AGTR1 between MRG clusters A and B and between gene clusters A and B
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that MRG cluster or gene cluster A had lower MRG 
scores. However, there are still some shortcomings in the 
study. First, since the datasets used do not have clinical 
data, including age, gender, glomerular filtration rate, 
etc., there is no way to further investigate the relation-
ship between this clinical information and the different 
subtypes. Second, the sample size of this study is small, 
which may lead to some bias. Third, the results of the 
study still need to be validated by clinical cohort studies 
and in vitro and in vivo experiments. Therefore, we will 
collect more clinical samples, record more clinical infor-
mation, and conduct in vitro and in vivo experiments and 
clinical cohort studies to further test our results.

Conclusion
To sum up, our investigation successfully identified five 
significant MRGs and developed a nomogram model to 
predict the incidence of RIF in patients. Additionally, 
two distinct MRG patterns were identified based on the 
aforementioned five MRGs, with MRG cluster A poten-
tially linked to RIF. Collectively, our findings suggest that 
MRGs could serve as a viable diagnostic tool for identi-
fying RIF subtypes, thus contributing to its prevention, 
delay, and treatment.

Supplementary Information
The online version contains supplementary material available at https://doi.
org/10.1186/s41065-023-00295-8.

Additional file 1: Supplementary Figure 1. (A-G) Consensus matrices of the 
5 MRGs for k = 3-9. Supplementary Figure 2. (A-G) Consensus matrices of 
the 56 DEGs for k = 3-9.

Additional file 2:Supplementary Table 1. The 48 MRGs. Supplementary 
Table 2. The 33 differentially expressed MRGs. Supplementary Table 3. The 
GO enrichment analysis. Supplementary Table 4. The KEGG enrichment 
analysis.

Supplementary Material 3

Acknowledgements
We acknowledge the GEO database for providing their platforms and 
contributors for uploading their datasets.

Authors’ contributions
Hanchao Zhang and Guobiao Liang conceived and designed the project. 
Hanchao Zhang wrote the manuscript. Yue Yang, Zhengdao Liu and Hong 
Xu analyzed the data. Han Zhu and Peirui Wang helped prepare figures and/
or tables. Guobiao Liang critical revision of the manuscript for important 
intellectual content. All authors contributed to the manuscript and approved 
the submitted version.

Funding
No funding.

Data availability
The raw data used and analyzed during the current study are available from 
the corresponding author on reasonable request.

Declarations

Conflicts of interest
The authors declare that they have no competing interests.

Ethics approval and consent to participate
Not applicable.

Received: 4 April 2023 / Accepted: 16 July 2023

References
1. Hockham C, Bao L, Tiku A, Badve SV, Bello AK, Jardine MJ, Jha V, Toyama T, 

Woodward M, Jun M. Sex differences in chronic kidney disease prevalence in 
Asia: a systematic review and meta-analysis. Clin kidney J. 2022;15(6):1144–51.

2. Liu XY, Zhang XB, Zhao YF, Qu K, Yu XY. Research Progress of Chinese 
Herbal Medicine intervention in renal interstitial fibrosis. Front Pharmacol. 
2022;13:900491.

3. Herrera J, Henke CA, Bitterman PB. Extracellular matrix as a driver of progres-
sive fibrosis. J Clin Investig. 2018;128(1):45–53.

4. Feng YL, Wang WB, Ning Y, Chen H, Liu P. Small molecules against the origin 
and activation of myofibroblast for renal interstitial fibrosis therapy. Volume 
139. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie; 
2021. p. 111386.

5. Kadumuri RV, Janga SC. Epitranscriptomic Code and its alterations in Human 
Disease. Trends Mol Med. 2018;24(10):886–903.

6. Roundtree IA, Evans ME, Pan T, He C. Dynamic RNA modifications in Gene 
expression regulation. Cell. 2017;169(7):1187–200.

7. Xie S, Chen W, Chen K, Chang Y, Yang F, Lin A, Shu Q, Zhou T, Yan X. Emerg-
ing roles of RNA methylation in gastrointestinal cancers. Cancer Cell Int. 
2020;20(1):585.

8. Ping XL, Sun BF, Wang L, Xiao W, Yang X, Wang WJ, Adhikari S, Shi Y, Lv Y, Chen 
YS, et al. Mammalian WTAP is a regulatory subunit of the RNA N6-methyl-
adenosine methyltransferase. Cell Res. 2014;24(2):177–89.

9. Liu J, Yue Y, Han D, Wang X, Fu Y, Zhang L, Jia G, Yu M, Lu Z, Deng X, et al. A 
METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine 
methylation. Nat Chem Biol. 2014;10(2):93–5.

10. Jurga S, Barciszewski J, Epitranscriptomics. RNA Technologies. 2021; 12.
11. Zhang X, Su H, Chen H, Li Q, Liu X, Zhang L, Wu W, Chan M, Chen H. RNA 

modifications in gastrointestinal Cancer: current status and future perspec-
tives. Biomedicines. 2022; 10(8).

12. Shi HL, Wang X, Lu ZK, Zhao B, Ma HH, Hsu PJ, Liu C, He C. YTHDF3 facilitates 
translation and decay of N-6-methyladenosine-modified RNA. Cell Res. 
2017;27(3):315–28.

13. Wang X, Zhao BS, Roundtree IA, Lu ZK, Han DL, Ma HH, Weng XC, Chen K, 
Shi HL, He C. N-6-methyladenosine modulates Messenger RNA translation 
efficiency. Cell. 2015;161(6):1388–99.

14. Zhang C, Jia GF. Reversible RNA modification N-1 - methyladenosine (m(1)A) 
in mRNA and tRNA. Genom Proteom Bioinf. 2018;16(3):155–61.

15. Chen YS, Yang WL, Zhao YL, Yang YG. Dynamic transcriptomic m(5)C and its 
regulatory role in RNA processing. Wires Rna. 2021; 12(4).

16. Yang Y, Wang L, Han X, Yang WL, Zhang MM, Ma HL, Sun BF, Li A, Xia J, Chen 
J, et al. RNA 5-Methylcytosine facilitates the maternal-to-zygotic transition by 
preventing maternal mRNA decay. Mol Cell. 2019;75(6):1188.

17. Zou F, Tu RJ, Duan B, Yang ZL, Ping ZH, Song XQ, Chen SY, Price A, Li H, Scott 
A, et al. Drosophila YBX1 homolog YPS promotes ovarian germ line stem cell 
development by preferentially recognizing 5-methylcytosine RNAs. P Natl 
Acad Sci Usa. 2020;117(7):3603–9.

18. Wang S, Li H, Lian Z, Deng S. The role of RNA modification in HIV-1 infection. 
Int J Mol Sci. 2022; 23(14).

19. Li X, Fan X, Yin X, Liu H, Yang Y. Alteration of N-methyladenosine epitranscrip-
tome profile in unilateral ureteral obstructive nephropathy. Epigenomics-Uk. 
2020;12(14):1157–73.

20. Cui Z, Huang N, Liu L, Li X, Li G, Chen Y, Wu Q, Zhang J, Long S, Wang M, et al. 
Dynamic analysis of m6A methylation spectroscopy during progression and 
reversal of hepatic fibrosis. Epigenomics-Uk. 2020;12(19):1707–23.

21. Li T, Zhuang Y, Yang W, Xie Y, Shang W, Su S, Dong X, Wu J, Jiang W, Zhou Y, 
et al. Silencing of METTL3 attenuates cardiac fibrosis induced by myocardial 

https://doi.org/10.1186/s41065-023-00295-8
https://doi.org/10.1186/s41065-023-00295-8


Page 14 of 15Zhang et al. Hereditas          (2023) 160:32 

infarction via inhibiting the activation of cardiac fibroblasts. Faseb J. 
2021;35(2):e21162.

22. Zhang JX, Huang PJ, Wang DP, Yang WY, Lu J, Zhu Y, Meng XX, Wu X, Lin QH, 
Lv H, et al. M(6)a modification regulates lung fibroblast-to-myofibroblast 
transition through modulating KCNH6 mRNA translation. Mol Ther. 
2021;29(12):3436–48.

23. Modena BD, Kurian SM, Gaber LW, Waalen J, Su AI, Gelbart T, Mondala TS, 
Head SR, Papp S, Heilman R, et al. Gene expression in biopsies of Acute 
rejection and interstitial Fibrosis/Tubular atrophy reveals highly Shared 
Mechanisms that Correlate with worse long-term outcomes. Am J Transplant. 
2016;16(7):1982–98.

24. Park WD, Griffin MD, Cornell LD, Cosio FG, Stegall MD. Fibrosis with inflam-
mation at one year predicts Transplant Functional decline. J Am Soc Nephrol. 
2010;21(11):1987–97.

25. Li D, Li K, Zhang W, Yang KW, Mu DA, Jiang GJ, Shi RS, Ke D. The m6A/m5C/
m1A regulated gene signature predicts the prognosis and correlates with the 
Immune Status of Hepatocellular Carcinoma. Front Immunol. 2022; 13.

26. Shao DQ, Li Y, Wu JY, Zhang BB, Xie S, Zheng XL, Jiang ZQ. An m6A/m5C/
m1A/m7G-Related long non-coding RNA signature to Predict Prognosis and 
Immune features of Glioma. Front Genet. 2022; 13.

27. Rong DW, Sun GS, Wu F, Cheng Y, Sun GQ, Jiang W, Li X, Zhong Y, Wu 
LL, Zhang CY, et al. Epigenetics: roles and therapeutic implications of 
non-coding RNA modifications in human cancers. Mol Ther-Nucl Acids. 
2021;25:67–82.

28. Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD. The sva package for 
removing batch effects and other unwanted variation in high-throughput 
experiments. Bioinformatics. 2012;28(6):882–3.

29. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, 
Schwikowski B, Ideker T. Cytoscape: a software environment for inte-
grated models of biomolecular interaction networks. Genome Res. 
2003;13(11):2498–504.

30. Bader GD, Hogue CWV. An automated method for finding molecular com-
plexes in large protein interaction networks. BMC Bioinformatics. 2003;4:2.

31. Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S, Doncheva NT, 
Legeay M, Fang T, Bork P, et al. The STRING database in 2021: customizable 
protein-protein networks, and functional characterization of user-uploaded 
gene/measurement sets. Nucleic Acids Res. 2021;49:D605–12.

32. Mao J, Wang G, Yang L, Tan L, Tian C, Tang L, Fang L, Mu Z, Zhu Z, Li Y. Com-
bined Network Pharmacology and Molecular Docking to verify the treatment 
of type 2 diabetes with Pueraria Lobata Radix and Salviae Miltiorrhizae Radix. 
Comput Math Methods Med. 2023;2023:9150324.

33. Tibshirani R. Regression shrinkage and selection via the lasso: a retrospective. 
J R Stat Soc B. 2011;73:273–82.

34. Sanz H, Valim C, Vegas E, Oller JM, Reverter F. SVM-RFE: selection and 
visualization of the most relevant features through non-linear kernels. BMC 
Bioinformatics. 2018;19(1):432.

35. Mantas CJ, Castellano JG, Moral-Garcia S, Abellan J. A comparison of random 
forest based algorithms: random credal random forest versus oblique ran-
dom forest. Soft Comput. 2019;23(21):10739–54.

36. Iasonos A, Schrag D, Raj GV, Panageas KS. How to build and interpret a 
nomogram for cancer prognosis. J Clin oncology: official J Am Soc Clin Oncol. 
2008;26(8):1364–70.

37. Dai B, Sun F, Cai X, Li C, Liu H, Shang Y. Significance of RNA N6-Methyl-
adenosine regulators in the diagnosis and subtype classification of Child-
hood Asthma using the gene expression Omnibus Database. Front Genet. 
2021;12:634162.

38. Wilkerson MD, Hayes DN. ConsensusClusterPlus: a class discovery tool 
with confidence assessments and item tracking. Bioinf (Oxford England). 
2010;26(12):1572–3.

39. Zhang N, Zhao YD, Wang XM. CXCL10 an important chemokine associated 
with cytokine storm in COVID-19 infected patients. Eur Rev Med Pharmaco. 
2020;24(13):7497–505.

40. Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, Feng T, Zhou L, Tang W, Zhan L, et al. 
clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. 
Innov (Camb). 2021;2(3):100141.

41. Gu Z, Eils R, Schlesner M. Complex heatmaps reveal patterns and correlations 
in multidimensional genomic data. Bioinformatics. 2016;32(18):2847–9.

42. Jiang YF, Zhu YH, Zhen TM, Li J, Xing KC, He LQ, Zhu SB. Transcriptomic 
analysis of the mechanisms of alleviating renal interstitial fibrosis using the 
traditional chinese medicine Kangxianling in a rat model. Sci Rep-Uk. 2020; 
10(1).

43. Wang H, Jiang Q, Zhang L. Baicalin protects against renal interstitial fibrosis 
in mice by inhibiting the TGF-β/Smad signalling pathway. Pharm Biol. 
2022;60(1):1407–16.

44. Pinello N, Sun S, Wong JJ. Aberrant expression of enzymes regulat-
ing mA mRNA methylation: implication in cancer. Cancer Biol Med. 
2018;15(4):323–34.

45. Zhong H, Liu S, Cao F, Zhao Y, Zhou J, Tang F, Peng Z, Li Y, Xu S, Wang C, et 
al. Dissecting Tumor Antigens and Immune Subtypes of Glioma to develop 
mRNA vaccine. Front Immunol. 2021;12:709986.

46. Yin J, He X, Qin F, Zheng S, Huang Y, Hu L, Chen Y, Zhong L, Hu W, Li S. 
M(6)A-related lncRNA signature for predicting prognosis and immune 
response in head and neck squamous cell carcinoma. Am J Transl Res. 
2022;14(11):7653–69.

47. Little NA, Hastie ND, Davies RC. Identification of WTAP, a novel Wilms’ tumour 
1-associating protein. Hum Mol Genet. 2000;9(15):2231–9.

48. Horiuchi K, Kawamura T, Iwanari H, Ohashi R, Naito M, Kodama T, Hamakubo 
T. Identification of Wilms’ tumor 1-associating protein complex and its role in 
alternative splicing and the cell cycle. J Biol Chem. 2013;288(46):33292–302.

49. Wei A, Zhao F, Hao A, Liu B, Liu Z. N-acetyl-seryl-aspartyl-lysyl-proline (AcS-
DKP) mitigates the liver fibrosis via WTAP/mA/Ptch1 axis through hedgehog 
pathway. Gene. 2022;813:146125.

50. Elliott DJ, Dalgliesh C, Hysenaj G, Ehrmann I. RBMX family proteins connect 
the fields of nuclear RNA processing, disease and sex chromosome biology. 
Int J Biochem Cell Biol. 2019;108:1–6.

51. Renieri A, Mencarelli MA, Cetta F, Baldassarri M, Mari F, Furini S, Piu P, Ariani 
F, Dragani TA, Frullanti E. Oligogenic germline mutations identified in early 
non-smokers lung adenocarcinoma patients. Lung cancer (Amsterdam 
Netherlands). 2014;85(2):168–74.

52. Martínez-Arribas F, Agudo D, Pollán M, Gómez-Esquer F, Díaz-Gil G, Lucas R, 
Schneider J. Positive correlation between the expression of X-chromosome 
RBM genes (RBMX, RBM3, RBM10) and the proapoptotic bax gene in human 
breast cancer. J Cell Biochem. 2006;97(6):1275–82.

53. You Y, Fu Y, Huang M, Shen D, Zhao B, Liu H, Zheng Y, Huang L. Recent 
advances of m6A demethylases inhibitors and their Biological Functions in 
Human Diseases. Int J Mol Sci. 2022; 23(10).

54. Li N, Kang Y, Wang L, Huff S, Tang R, Hui H, Agrawal K, Gonzalez GM, Wang Y, 
Patel SP, et al. ALKBH5 regulates anti-PD-1 therapy response by modulating 
lactate and suppressive immune cell accumulation in tumor microenviron-
ment. P Natl Acad Sci Usa. 2020;117(33):20159–70.

55. Shen C, Sheng Y, Zhu AC, Robinson S, Jiang X, Dong L, Chen H, Su R, Yin Z, Li 
W, et al. RNA demethylase ALKBH5 selectively promotes Tumorigenesis and 
Cancer Stem Cell Self-Renewal in Acute myeloid leukemia. Cell Stem Cell. 
2020;27(1):64–80.

56. Sun W, Li Y, Ma D, Liu Y, Xu Q, Cheng D, Li G, Ni C. ALKBH5 promotes lung 
fibroblast activation and silica-induced pulmonary fibrosis through miR-
320a-3p and FOXM1. Cell Mol Biol Lett. 2022;27(1):26.

57. Chen Y, Zhou P, Deng Y, Cai X, Sun M, Sun Y, Wu D. ALKBH5-mediated m a 
demethylation of TIRAP mRNA promotes radiation-induced liver fibrosis and 
decreases radiosensitivity of hepatocellular carcinoma. Clin translational Med. 
2023;13(2):e1198.

58. Hinman MN, Lou H. Diverse molecular functions of Hu proteins. Cell Mol Life 
Sci. 2008;65(20):3168–81.

59. Diaz-Quintana A, Garcia-Maurino SM, Diaz-Moreno I. Dimerization 
model of the C-terminal RNA Recognition Motif of HuR. Febs Lett. 
2015;589(10):1059–66.

60. Schultz CW, Preet R, Dhir T, Dixon DA, Brody JR. Understanding and targeting 
the disease-related RNA binding protein human antigen R (HuR). Wiley 
interdisciplinary reviews. RNA. 2020;11(3):e1581.

61. Chang N, Ge J, Xiu L, Zhao Z, Duan X, Tian L, Xie J, Yang L, Li L. HuR mediates 
motility of human bone marrow-derived mesenchymal stem cells triggered 
by sphingosine 1-phosphate in liver fibrosis. J Mol Med. 2017;95(1):69–82.

62. Zhang Z, Yao Z, Wang L, Ding H, Shao J, Chen A, Zhang F, Zheng S. Activation 
of ferritinophagy is required for the RNA-binding protein ELAVL1/HuR to reg-
ulate ferroptosis in hepatic stellate cells. Autophagy. 2018;14(12):2083–103.

63. Zhang J, Wang H, Chen H, Li H, Xu P, Liu B, Zhang Q, Lv C, Song X. ATF3 
-activated accelerating effect of LINC00941/lncIAPF on fibroblast-to-myofi-
broblast differentiation by blocking autophagy depending on ELAVL1/HuR in 
pulmonary fibrosis. Autophagy. 2022;18(11):2636–55.

64. Wang JY, Lu AQ. The biological function of m6A reader YTHDF2 and its role in 
human disease. Cancer Cell Int. 2021;21(1):109.

65. Chen X, Zhou X, Wang X. mA binding protein YTHDF2 in cancer. Experimen-
tal Hematol Oncol. 2022;11(1):21.



Page 15 of 15Zhang et al. Hereditas          (2023) 160:32 

66. Veerappan A, Reid AC, O’Connor N, Mora R, Brazin JA, Estephan R, Kameue T, 
Chen J, Felsen D, Seshan SV, et al. Mast cells are required for the development 
of renal fibrosis in the rodent unilateral ureteral obstruction model. Am J 
Physiol Renal Physiol. 2012;302(1):F192–F204.

67. Hirooka Y, Nozaki Y, Niki K, Inoue A, Sugiyama M, Kinoshita K, Funauchi M, 
Matsumura I. Foxp3-Positive Regulatory T cells contribute to Antifibrotic 
Effects in Renal Fibrosis via an Interleukin-18 receptor signaling pathway. 
Front Med. 2020;7:604656.

68. Wang YY, Jiang H, Pan J, Huang XR, Wang YC, Huang HF, To KF, Nikolic-Pater-
son DJ, Lan HY, Chen JH. Macrophage-to-myofibroblast transition contributes 
to interstitial fibrosis in Chronic Renal Allograft Injury. J Am Soc Nephrology: 
JASN. 2017;28(7):2053–67.

69. Wilson SE. TGF beta – 1, -2 and – 3 in the modulation of fibrosis in the cornea 
and other organs. Exp Eye Res. 2021;207:108594.

70. Lanvin O, Guglielmi P, Fuentes V, Gouilleux-Gruart V, Mazière C, Bissac E, 
Regnier A, Benlagha K, Gouilleux F, Lassoued K. TGF-beta1 modulates Fas 
(APO-1/CD95)-mediated apoptosis of human pre-B cell lines. Eur J Immunol. 
2003;33(5):1372–81.

71. Xu A, Liu Y, Chen W, Wang J, Xue Y, Huang F, Rong L, Lin J, Liu D, Yan M, 
et al. TGF-β-Induced Regulatory T cells directly suppress B cell responses 
through a noncytotoxic mechanism. J Immunol (Baltimore Md : 1950). 
2016;196(9):3631–41.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations. 


	Significance of methylation-related genes in diagnosis and subtype classification of renal interstitial fibrosis
	Abstract
	Introduction
	Materials and methods
	Acquisition of data
	Identification of key MRGs
	Establishment of a nomogram model
	Identification of molecular subtype
	Estimation of the genetic profile
	Estimation of the immune cell infiltration
	Functional and pathway enrichment analysis

	Results
	Landscape of the 48 m1A/m6A/m5C regulators
	Identification of of key MRGs
	Construction of the nomogram
	Identification of two different MRG patterns
	Function and pathway enrichment
	Identification of two distinct genetic patterns and immune cell infiltration
	The role of MRG and gene patterns in RIF

	Discussion
	Conclusion
	References


