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a breeding value — a prediction of the trait values of the 
offspring that an animal will have — based on measure-
ments on the animal itself and its relatives. Genomic 
selection adds molecular information in the form of 
genome-wide DNA markers to the evaluation.

Animal breeding before genomics was already 
immensely effective in changing the traits of farm ani-
mals. Take for example broiler chicken breeding. Zuidhof 
et al. [3] compared commercial broilers from 2005 (Ross 
308 from Aviagen) with populations where breeding 
stopped in 1957 or 1978, kept in the same environment 
and fed the same feed. At eight weeks of age, the aver-
age body mass was 0.9 kg for the population with genet-
ics from 1957, 1.8 for the population with genetics from 
1978, and 4.2  kg for the population with genetics from 
2005. The first SNP chip for chickens was developed in 
2005 [4], and Aviagen started using genomic selection in 
2012 [5] and thus, this difference is due to breeding that 
occurred before genomics. Genomics, however, made 

Background
Genomics, in the sense of genetic analyses using markers 
spaced out along the whole genome, has become a main-
stream part of animal breeding. In March 2021, the dairy 
cattle evaluation in the US run by the Council on Dairy 
Cattle Breeding had accumulated five million genotyped 
animals [1]. These data are gathered for the purpose 
genomic selection, that is, evaluation of animals based 
on genome-wide DNA-testing, which was implemented 
in the US in 2007 (reviewed by [2]). Genomic selection 
builds on the practice of genetic evaluation by estimating 
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selection even more effective, either by increasing accu-
racy of selection or reducing generation interval, depend-
ing on the species. Potentially, it can also tell us about the 
molecular nature of the variants under selection and lead 
to new biotechnology applications for livestock.

The term “genomics” is derived from “genome”, which 
was coined by Hans Winkler in 1920 [6] and refers to one 
haploid set of chromosomes [7], or —with some degree 
of slippage in meaning — the complete DNA of a spe-
cies. According to Thomas Roderick [8] the extension 
to “genomics” was conceived in 1986, as founders of the 
journal Genomics were trying to find a name for it. From 
the start, they regarded genomics as the name of a new 
field — “an activity, a new way to think about biology”.

There are (at least) two ways to think of genomics in 
animal breeding: two perspectives on genomics that will, 
throughout this paper, be called the statistical and the 
sequence perspectives:

1.	 We may think of the genome as a big table of 
numbers, where each row is an individual and each 
column a genetic variant, and the numbers are 
ancestry indicators. These matrices lend themselves 
to statistical calculations such as estimation of 
genomic breeding values. This is the view from the 
statistical perspective.

2.	 Alternatively, we may think of the genome as a long 
string of A, C, G and T. They lend themselves to 
molecular biology operations like predicting the 
amino acid substitution from a base pair substitution, 
or identifying patterns of interest. This is the view 
from the sequence perspective.

The perspectives roughly map to two concepts of a so-
called gene [9]: The statistical perspective relates to the 
instrumental gene, a calculating device used by classi-
cal geneticists to understand inheritance patterns. The 
instrumental gene is a particle of inheritance, observed 
indirectly through crosses and comparisons of traits 
between relatives. For an example, the textbook of clas-
sical genetics by Sturtevant and Beadle [10] is full of 
crossing schemes of fruit flies that allow modes of inheri-
tance to be investigated. In the introduction, the authors 
describe their view of genetics as a science. They call it 
“a mathematically formulated subject that is logically 
complete and self-contained”, without the necessity of a 
physical or chemical account of how inheritance works. 
On the other hand, the molecular perspective aligns 
closer with the nominal gene concept, where a gene is a 
DNA sequence that has a name and (potentially) a func-
tion. As an example, we can look at a genome browser 
such as Ensembl [11], which shows a genome as a series 
of track, with colourful boxes denoting genes, regulatory 
DNA sequences, and other associated information.

To be clear, I am not suggesting that individual geneti-
cists are so limited in their thinking as to use only one 

of these perspectives. Any one researcher probably has 
these and several other mental models of the genome 
for different tasks. In practice, geneticists seem to rou-
tinely switch between different perspectives and concep-
tions of central terms like “genome”, “gene” and “locus”, 
without much friction. Certainly, ambiguity may lead to 
“complexity and confusion” [12], but I would argue that 
the imprecision is also sometimes productive, as it avoids 
unnecessary debates about which of these concepts are 
“right”, when the real answer is that all of them are work-
ing models and all are useful in different contexts.

The two perspectives lead to different views about the 
importance of identifying sequence variants that cause 
trait differences between individuals (“causative vari-
ants”, for short). From the statistical perspective, genomic 
data are large sets of markers of ancestry; we can make 
use of them while remaining agnostic about their func-
tion. From the sequence perspective, genomic data are 
a source of causative variants; we need to identify and 
make use of them. To realise the future potential of the 
sequence perspective, geneticists need to identify caus-
ative variants, while the statistical perspective has been 
successful, precisely by ignoring causative variants. 
The power of markers [13] is what Sturtevant & Beadle 
described: The point is to make use of statistical regulari-
ties without getting bogged down in mechanistic detail. 
Conversely, the potential of the molecular perspective is 
in understanding mechanisms and learning to manipu-
late them in ways that would not be possible by tradi-
tional selection and crossing. Mostly, this potential of 
the sequence perspective has not been realised, but the 
search for molecular knowledge has made possible tools 
that underpin applications of the statistical perspective, 
especially genomic selection.

Main text
Tools of the statistical perspective
Genomic selection is the crowning achievement of the 
statistical perspective on genomics in animal breeding, 
building on a long line of research of mapping pheno-
types to genotypes. Genetic mapping — the family of 
methods used for localising variants that affect traits, 
roughly at first — goes back to the early history of clas-
sical genetics. Once geneticists had discovered that genes 
were arranged linearly on chromosomes, they could build 
maps of where causative variants underlying visible phe-
notypes were located relative to each other, the first map 
being published by Sturtevant [14]. This map building 
activity, based on crossing and detecting recombinant 
individuals, is called linkage mapping. The extension 
to complex traits with many causative variants of small 
effects is traditionally called “quantitative trait locus map-
ping” [15]. The extension to large population samples of 
more distantly related individuals is called “genome-wide 
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association” [16], and has become the dominant form 
of genetic mapping. Arguably, genetic mapping can be 
viewed both from the statistical and sequence perspec-
tives. On one hand, these methods involve statistical 
genetical methods that are very similar to those used in 
genomic prediction, and involve representing genomic 
data statistically. On the other hand, the end goal is usu-
ally to identify causative variants.

Out of genetic mapping of traits relevant to breeding 
comes marker-assisted selection, an earlier paradigm for 
incorporating molecular information in breeding. In a 
way, marker-assisted selection is the most intuitive way 
to imagine molecular breeding: Imagine that we have 
identified some genetic variants that either cause a trait 
of interest, or are strongly associated with it. Then, we 
can genotype our selection candidates for the variant of 
interest, and incorporate those genotypes into selection 
decisions. For example, if we know about a strongly del-
eterious variant, we can exclude candidates that carry 
it. The proposition of a genetic test is especially attrac-
tive when the trait is otherwise hard to phenotype. This 
was precisely the situation with several large-effect del-
eterious alleles in pigs and cattle, where marker-assisted 
selection was successfully implemented against the prob-
lematic alleles: malignant hyperthermia and the RN gene 
in pigs (reviewed by [13, 17]) and BLAD in cattle [18]. 
DNA tests for such large-effect damaging variants are 
now routinely included in many genomic breeding pro-
grams (e.g., [19, 20]).

At some point during the late 1990 to early 2000s, ani-
mal breeding researchers shifted their thinking from 
marker-assisted selection to genomic selection, from 
thinking about mapping causative variants to treating 
the whole genome together. Arguably, the key paper, 
and the most cited, is the one by Meuwissen, Hayes and 
Goddard [21]. It presents the full case for genomic selec-
tion, including simulations and a few alternative estima-
tion methods (leading to the so-called Bayesian alphabet 
family of methods). However, genomic selection did not 
appear fully formed at once. Other genomic selection 
precursor papers from the era include:

 	• The 1990 paper by Lande & Thompson [22] that 
contains the key idea of covering the genome with 
markers and selecting on a total score based on all 
the markers.

 	• The 1997 paper by Nejati-Javaremi, Smith & Gibson 
[23], the key idea of which is to create a relationship 
matrix based on variants that affect a trait, creating 
estimated breeding values based on what they call 
“total allelic relationship”.

 	• The 1998 paper by Haley & Visscher [24] which uses 
the term “genomic selection” and clearly expresses 
the concept, including the interpretation of genetic 
markers as realised relatedness.

Exactly when and by whom (in conversation or in paral-
lel) the shift happened is a topic of its own. It seems to 
have been a gradual process. Still, Meuwissen, Hayes and 
Goddard (2001) is a landmark in that it provided a full 
recipe for genomic selection, and ran the proof of con-
cept in silico. Genomic selection worked well enough in 
theory that is provided the inspiration for creating the 
tools and the practical initiatives to make it reality.

We can think of genomic prediction it as refining the 
estimate of how closely related animals are to each other 
by observing how much DNA the animals share, as 
opposed to the average relatedness that can be predicted 
from a pedigree. Alternatively, we can think of it as simul-
taneously estimating the contribution of every part of the 
genome (that is, every marker we genotype), and adding 
them up to a genomic estimate for that animal (see [25] 
for a review of the statistical approaches used in animal 
breeding). Either way, the key insight in genomic selec-
tion is that one can accurately predict breeding values in 
the absence of information about the function of partic-
ular variants by combining all markers in one statistical 
model. As Lowe & Bruce point out [13], this black-boxing 
of genetic mechanisms is characteristic of the quantita-
tive genetics tradition, here expressed by one of the pio-
neering applied quantitative geneticists, Lush [26]:

It is rarely possible to identify the pertinent genes 
in a Mendelian way or to map the chromosomal 
position of any of them. Fortunately this inabil-
ity to identify and describe the genes individually 
is almost no handicap to the breeder of economic 
plants or animals. What he would actually do if he 
knew the details about all the genes which affect a 
quantitative character in that population differs 
little from what he will do if he merely knows how 
heritable it is and whether much of the hereditary 
variance comes from dominance or overdominance, 
and from epistatic interactions between the genes.

Lowe & Bruce argue that this attitude is key to the suc-
cess of genomic selection: this strategy is the outcome 
of an alignment, but not a full integration of quantita-
tive and molecular genetics, which allowed quantitative 
genetics to make use of molecular methods to generate 
ever denser marker maps, while sticking with the tradi-
tion of abstraction [13].

The effects of genomics have been dramatic. Genomic 
prediction allows selection to proceed more quickly, or 
more accurately, depending on the biology of the spe-
cies and the design of the breeding program. In cattle, 
increased selection accuracy for young bulls without 
daughter records allow shorter generation times [2, 27, 
28], and genotyping of heifers much improves selection 
accuracy of cows relative to pedigree-based evaluation 
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[29]. In pigs, genomics have increased accuracy of selec-
tion in several traits by 50% [17]. In poultry, accuracy has 
also increased; a review of genomic selection in poultry 
gives accuracy increases ranging from 20% to over 50% in 
layers and broilers [5].

There are further statistical genetics tools, agnos-
tic of marker function, that can be enriched by genom-
ics. Optimal contributions selection (reviewed by [30]) 
is a family of methods to balance the genetic improve-
ment and inbreeding or loss of diversity of a population. 
These methods work by finding less related individu-
als to pair, that still give a high expected genetic gain in 
the offspring. Like in genomic selection, pedigree relat-
edness can be substituted with genomic relatedness. 
Since genomic selection in practice tends to accelerate 
inbreeding, there may be greater need for optimal con-
tributions selection in genomic breeding. Specifically, 
genomic selection can in principle differentiate between 
individuals that are identically related in terms of pedi-
gree, and thus lead to less correlation between families, 
and a lower inbreeding rate, all else equal [31]. In prac-
tice, all else is not equal, because genomics leads to rede-
signs of breeding programs, which may in itself increase 
or decrease the inbreeding rate. In breeding programs 
where genomic selection helped reduce generation time, 
a low inbreeding rate per generation may translate to 
accelerating inbreeding per year. There are examples of 
both accelerated [32] and reduced inbreeding rates after 
genomic selection [33].

Furthermore, population genetic methods can find the 
similarity between populations and individuals, and clas-
sify individuals based on breed composition, geographic 
origin or assign offspring to parents. For example, DNA 
testing to confirm pedigree in cattle started with blood 
groups, moved on to genetic markers, and now use the 
genome-wide SNP chips that are used for genomic selec-
tion [34]. Genomics allows plentiful markers distributed 
throughout the genome, and so, methods can be more 
precise in pinpointing ancestry [35], and reconstruct 
pedigree information that is missing [36].

Tools of the sequence perspective
From the sequence perspective, the development of 
genomics in animal breeding can be seen as ongoing 
effort to build the tools for causative variant identifica-
tion. In the process, it also gave rise to the enabling tech-
nology for genomic selection. This development includes 
reference genomes for farm animals, dense marker pan-
els and affordable methods to type them (SNP chips, 
reduced representation sequencing), genome annotation 
and maps that localise causative variants in the genome 
(linkage mapping and genome-wide association).

The chicken genome sequence was published in 
2004 [37], cattle in 2009 [38], and pig in 2012 [39]. The 

choice of any one publication and year as a milestone 
in a genome sequencing project is somewhat arbitrary, 
because the sequences reported in these papers were nei-
ther the first nor the last drafts. Genome assembly is an 
iterative process that combines different kinds of data, 
computational models, and human judgement to rep-
resent a genome. For a historical account of the diverse 
data and ways of reasoning used in the pig genome proj-
ect, see Lowe [40]. Lowe points out that a genome proj-
ect was not just about sequencing in the narrow sense 
of putting DNA base pairs in order, but “thick” sequenc-
ing, which also includes the creation of tools, annotation 
with additional data, and dissemination to a research 
community that makes reference genomes useful. Con-
sequently, the development of farm animal reference 
sequences is still ongoing, with the pig, cattle and chicken 
genomes being updated [41, 42] and followed by sheep, 
goat, ducks, turkeys and many other. There are now mul-
tiple high-quality genome assemblies, e.g. in cattle [43, 
44]. Inevitably, more are coming, as genome assembly 
becomes more affordable and streamlined.

The next layer atop the reference genome is annotation, 
here understood as any information that has a genomic 
coordinate, localising it in the genome. As Szymanski et 
al. [45] point out in a study of the yeast genome, one of 
the functions of a reference genome as a digital model of 
the genome is to allow researchers to organise and con-
nect different sources of data. Researchers can put their 
data on the same coordinate system and create a coher-
ent picture. In the yeast community, that coherence-
building used to be achieved by sharing strains and 
standard protocols, before the reference genome. For 
logistical reasons, germplasm sharing is harder in farm 
animal genetics. But now, genome annotation is avail-
able in genome browsers such as the NCBI Genome 
Data Viewer and Ensembl, which contain comparative 
information [46], the location of genes, and non-genic 
elements of importance such as open chromatin (as it is 
becoming available). Projects like Functional Annotation 
of Animal Genomes [47] are producing detailed maps of 
gene-regulatory regions in farm animal genomes, with 
the express purpose that researchers are going to be able 
integrate their openly available data into their projects. 
Such functional genomic data might be useful both for 
annotating genetic variants as a part of fine-mapping 
and nominating potential causative variants, in genomic 
prediction with sequence data, and in molecular biology 
studies of gene-regulatory networks.

The key technology, however, enabling genomics in 
farm animals is affordable high throughput genotyping, 
in the form of SNP chip technology that allows the testing 
of thousands of single nucleotide variants (SNPs) at the 
same time. SNP chips are, generally, surfaces with known 
pieces of DNA them. The array captures fragments of 
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DNA close to the markers we want to type, and a DNA 
polymerase enzyme that incorporates labelled nucleo-
tides gives a fluorescence signal, where the relative sig-
nal intensity of the alleles will tell us the genotype [48]. 
A clustering algorithm will help turn the intensity values 
into genotypes — the numeric coding needed for all the 
statistical genomic methods.

Looking at the original three farm animal genome 
papers, they all mentioned genetic improvement of live-
stock, but in oblique terms. It is as if they either did not 
know precisely how a reference genome would improve 
breeding in these animals, or that the way forward now 
that the reference genome was in place was too obvious 
to even to mention:

 	• The chicken genome sequence promotes both the 
development of more refined polymorphic maps (see 
the accompanying paper [49]) and the framework for 
discovering the functional polymorphisms underlying 
interesting quantitative traits, thus fully exploiting 
the genetic potential of the chicken. [37]

 	• The cattle genome and associated resources will 
facilitate the identification of novel functions 
and regulatory systems of general importance in 
mammals and may provide an enabling tool for 
genetic improvement within the beef and dairy 
industries. [38]

 	• The pig genome sequence provides an important 
resource for further improvements of this important 
livestock species, and our identification of many 
putative disease-causing variants extends the 
potential of the pig as a biomedical model. [39]

However, when the first SNP chips were being published, 
the design of the SNP chips were explicitly motivated 
with the ability to perform genomic selection, in addition 
to the ability to improve genetic mapping:

 	• The aim of this study was to develop and 
characterize a high-density, genome-wide SNP assay 
for cattle with the power to detect genomic segments 
harboring inter-individual DNA sequence variation 
affecting phenotypic traits and for application to 
GWS, in which an animal’s genetic merit is estimated 
solely from its multilocus genotype. [50]

 	• The most efficient way to genotype large numbers of 
SNPs is to design a high-density assay that includes 
tens of thousands of SNPs distributed throughout 
the genome. These SNP “chips” are a valuable 
resource for genetic studies in livestock species, such 
as genomic selection, detection of [quantitative trait 
loci] or diversity studies. [51]

 	• In livestock species like the chicken, high throughput 
single nucleotide polymorphism (SNP) genotyping 
assays are increasingly being used for whole genome 
association studies and as a tool in breeding 
(referred to as genomic selection). [52]

These genomic tools — reference genomes, genome 
annotation, large-scale genotyping — build towards 
detecting causative variants that affect traits by allowing 
bigger and more marker-dense genome-wide association 
studies for localising causative variants, and the ability to 
look under the loci detected to find the underlying genes 
and important sequence elements, such as gene-regula-
tory sequences. It is striking to read the attitudes in com-
mentaries on genomics in animal breeding from the early 
days of genomics. Here is Bulfield [53] in 2000 describing 
the isolation of causative variants:

Farm animal genomics is developing in four phases. 
(1) Constructing maps of highly informative mark-
ers and genes. (2) Using these maps to scan broadly 
across genomes of resource populations, segregating 
for commercially important traits, to locate quanti-
tative trait loci (QTL) into 20–40 cM chromosomal 
segments. (3) Identifying the trait gene(s) themselves, 
within these regions. (4) Bridging the ‘phenotype gap’ 
between the gene(s) and the ultimate trait.

What implications would this have for animal breeding? 
Bulfield continues:

In animal breeding, a combination of genome analy-
sis and cell culture-based transgenesis would per-
mit a more controlled approach to animal breeding, 
especially for currently intractable traits such as 
fertility and disease resistance. In addition, cloning 
from adult cells (as with Dolly) would permit the 
replication of (for example) a proven high-yielding 
and productive dairy cow.

On the same theme, Goddard [54] wrote in 2003:

I believe animal breeding in the post-genomic era 
will be dramatically different to what it is today. 
There will be a massive research effort to discover 
the function of genes including the effect of DNA 
polymorphisms on phenotype. Breeding programmes 
will utilize a large number of DNA-based tests for 
specific genes combined with new reproductive tech-
niques and transgenes to increase the rate of genetic 
improvement and to produce for, or allocate animals 
to, the product line to which they are best suited. 
However, this stage will not be reached for some 
years by which time many of the early investors will 
have given up, disappointed with the early benefits.

In retrospect, Bulfield was clearly too optimistic; God-
dard’s more tempered optimism might still be right 
depending on how long time counts as “some years”. 
Also, the technologies listed by Bulfield [53] — linkage 
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maps of 20 to 40  cM resolution, microsatellite and 
amplified fragment length markers, back-crosses and 
expressed sequence tag libraries — sound antique to stu-
dents of animal breeding educated today. The low num-
ber of markers (e.g., 40 cM resolution would mean about 
150 markers to cover the cattle genome), made sense 
for genetic mapping based on linkage within families, 
which was the state of the art at the time. The tools of 
the sequence perspective have moved far during 20 years, 
but the underlying problems of causative variant identifi-
cation remain the same.

That is, despite the increasing development of molecu-
lar tools, statistical methods, and increasing dataset sizes, 
there are few known causative variants for economically 
important traits (see tables in [55]). None of them have 
yet led to transgenic animals that are used in farming. 
Why have we not found the causative variants? There are 
at least three problems:

1.	 It turns out that most traits of interest are massively 
polygenic. That is, they are affected by thousands of 
genetic variants, most of individually small effects. 
This has been a staple assumption of quantitative 
genetics since the early 20th century, and was further 
cemented by the failure of linkage mapping to 
explain large chunks of inheritance, and now there 
are methods (based on genomic selection models) 
to estimate polygenicity from data. The estimated 
number of variants for complex traits in humans are 
in the range of tens of thousands of causative variants 
[56, 57].

2.	 Quantitative traits may have complex genetic 
architectures in other ways than polygenicity; they 
may be affected by rare variants whose effects are 
hard to estimate, and variants that act in non-
additive ways (dominance or epistasis). This is less 
important for selection, as the response to selection 
depends on the additive genetic variance, and 
even non-additive effects at the variant level can 
result in substantial additive genetic variance [58, 
59]. However, when we go on to identify causative 
variants, it may matter, for example, if the apparently 
additive outcome depends on pairwise interactions 
between variants that are located close together.

3.	 Even when an association has been isolated (and 
there are thousands of them [60]), fine-mapping an 
association signal down to the causative variant or 
even gene is hard, because there are many variants, 
and they correlate (geneticists call this correlation, 
abstrusely, “linkage disequilibrium”), and interpreting 
them and testing their effects are hard work.

The Goddard [54] quote is particularly apt, because 
while the post-genomic future he envisaged, based on 
the sequence perspective, has not happened, at about the 
same time as that paper was published, he was involved 

in developing genomic selection, the statistical genomics 
future that happened instead.

Statistical futures
What is the future of genomic breeding? From the sta-
tistical perspective, the immediate future seems to hold 
even more genomic selection — on more data, with new 
traits, spread to new species and breeding programs, and 
possibly enhanced with functional genomic data.

As data accumulate on more and more animals, larger 
datasets cause computational difficulties. Methods such 
as APY (the “algorithm of proven and young”), which 
splits a genomic selection dataset into a “core” group of 
animals and a “peripheral” group of animals and per-
forms the most intense computations only on the core 
subset, allow one to use large numbers of genotyped 
animals and still be able to compute estimated breeding 
values in reasonable times [61]. There is a whole strand 
of genomics research in animal breeding that works on 
improving the way genomic selection models are used in 
practice, how to fit the models efficiently, how to re-fit 
them when new data arrives, and how to estimate their 
accuracy (see review by [62]).

Another ongoing strand of research is extending 
genomic selection to more complicated genetic scenar-
ios like crossbred animals or generalisation between dif-
ferent populations. Standard genomic selection models 
work best for prediction within a single population. Thus, 
if crossbred animals are used for breeding, as is com-
mon for example in beef cattle, one would like to have 
genomic estimated breeding values for them. Even when 
the crossbred animals might not be used in breeding 
themselves, such as in pig or poultry breeding, there are 
traits that can only be measured on crossbred individuals 
and that information needs to be propagated back to the 
purebred nucleus animals. Similarly, small breeds might 
struggle to gather enough data, and the ability to borrow 
information from larger breeds is attractive.

However, genetic distance between animals quickly 
reduces the accuracy of genomic selection, complicating 
across-breed and multi-breed genomic prediction (see 
review by [63]). First, comparing distantly related breeds, 
the marker—trait associations in each breed could be 
very different, both because the breeds might carry dif-
ferent causative alleles and because the correlations (link-
age disequilibrium) between causal variants and markers 
might be different. Second, non-additive genetic effects, 
which to a first approximation can be discounted as 
a nuisance factor within a population, can make a sub-
stantial difference as genetic differences accumulate. To 
accurately predict the outcome, a full model would have 
to consider both dominance and the genotypes at mul-
tiple interacting loci. However, without identifying the 
interactions and non-linearities, the correlation between 
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marker effect estimates can be shown to decline with 
genetic differentiation [64].

Another avenue of development is to find a place for 
machine learning methods in genomics of animal breed-
ing. Machine learning methods have been used in func-
tional genomics to predict variant effects (reviewed by 
[65]), and in animal breeding applications for developing 
new phenotypes [66, 67], but so far have not been widely 
used in genomic selection. This is not for lack of trying; 
early work included attempts at using kernel methods 
[68, 69], tree regression [70] and neural networks [71], 
and later efforts have been made with deep learning [72, 
73]. However, unless we count linear mixed models as a 
machine learning application, these have not made much 
impact on applied genomic selection. Probably, this is 
because non-additive effects have hitherto not played 
a big role in selection, and these methods only outper-
form linear mixed models when predicting non-additive 
effects. This may change if genomic selection is extended 
to systems where non-additive effects are more impor-
tant, and one has to design matings to produce offspring 
that deviate from the parent average in the right direction 
[74], or for applications where predicting individual phe-
notype rather than breeding value is the goal.

Finally, there is a strand of research that aims to 
improve genomic selection by adding more genomic 
information. For biological reasons, some variants are 
expected to contribute more — variants close to known 
associations from genome-wide association studies, vari-
ants predicted by bioinformatic means to be functional, 
variants associated with gene expression variation, vari-
ants located in open chromatin in a relevant tissue, and 
so on. Various statistical extensions to the genomic selec-
tion models allow groups of variants to be treated sepa-
rately [75, 76] and given different emphasis depending 
on their predicted function. Such methods would be 
important for performing genomic selection with whole-
genome sequence data, that include millions rather than 
tens of thousands of variants. It seems clear that there is 
potential. A series of studies using gene expression quan-
titative trait locus data in combination with chromatin 
and evolutionary conservation suggest that one might be 
able to prioritise variants that are more likely to explain 
quantitative trait variation [77, 78]. However, empiri-
cal results on whole-genome sequence data in genomic 
prediction [79–82] are inconsistent between methods, 
populations and traits about whether adding genomic 
information brings any benefit, or even degrades accu-
racy. Even in simulations where the causative variants 
are known [83], the increase in accuracy from including 
true causative variants is not great, unless the true effect 
sizes of the variants are known. Therefore, the potential 
gain from enhancing genomic selection is probably much 

less than from the improvement that came from starting 
genomic selection over traditional evaluation.

The statistical perspective also holds the opposite pos-
sibility for a turn away from the genome. Instead of pur-
suing more genomic data to possibly improve genomic 
prediction, one could invest in improving measurement 
technology or modelling to improve the measurement of 
traits. Because the task, from the statistical perspective, is 
not to understand the genome but to get a good enough 
estimate of ancestry, it might be that the best choice is 
to settle for a relatively crude genotyping strategy (like 
a medium density SNP chip) and instead focus on gath-
ering more records on high-value but hard-to-measure 
traits [84].

Sequence futures
As we saw above, around the turn of the century there 
was optimism about identifying causative variants and 
exploiting them in animal breeding, which turned out 
to be mostly premature. Marker-assisted selection was 
successfully used on large-effect variants such as genetic 
defects, but less successful for quantitative traits. There 
are thousands of quantitative trait loci and genome-wide 
association hits published for economically relevant 
quantitative traits in farm animals, but only a handful 
that have been fine-mapped down to a causative variant 
[85]. However, molecular genetic techniques have moved 
rapidly over the last 20 years, not just adding new assays 
for gene-regulatory activity, but scaling them to the 
whole genome. With these new tools at hand, researchers 
are again optimistic that causative variants can be identi-
fied and exploited.

Several papers outline a vision of a future for the 
sequence perspective in animal [86, 87] and plant breed-
ing [88], using genome editing methods such as CRISPR/
Cas9 to supplement classical breeding with causative 
variants of known function. They call future, causative-
variant enabled breeding “Livestock 2.0” and “Breed-
ing 4.0”. Beside the version number conflict the visions 
have a similar overall shape: the future of breeding lies 
in identifying genetic causative variants through large 
genomic datasets, and then introducing them into breed-
ing individuals through gene editing. Clark et al. [86] also 
describe identifying functional variants and editing them 
as “a route to application” for functional genomic data in 
farm animals.

The first application along this route of gene editing 
would be the ongoing attempts at editing of monogenic 
high-value traits, such as hornlessness caused by polled 
alleles in cattle [89], or porcine reproductive and respira-
tory syndrome virus resistance in pigs conveyed by edits 
to the CD163 gene [90]. In the case of pigs, the caus-
ative variant does not occur naturally, and was designed 
based on molecular knowledge about the virus’ mode 
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of infection. The hornless variant (“polled”) was iden-
tified by genome-wide association [91]. Conceptually, 
these proposed applications are somewhat different than 
the applications that have been proposed for transgenic 
animals before. Transgenic farm animals, such as the 
defunct “Enviropig” project [92] or the AquaAdvantage 
salmon [93], would have DNA introduced from different 
species, and can be thought of as examples of a genetic 
engineering approach. These modern proposals typically 
use less dramatic changes, alleles that exist in nature, or 
could relatively easily happen by natural mutation (e.g., 
partial deletion of a gene in the CD163 example, or pro-
ducing a duplication similar to a naturally occurring 
duplication in the polled case).

Gene editing is like marker-assisted selection in the 
sense that the variants to be edited need to have large 
enough effects to be worthwhile, and editing must be 
more effective than conventional alternatives. Both 
resistance to porcine reproductive and respiratory syn-
drome and polledness are potentially traits of great value 
and connected to animal welfare. Outbreaks of porcine 
reproductive and respiratory syndrome has devastat-
ing consequences for pig health and farm profitability, 
and simulations suggest that gene editing in combina-
tion with partially protective vaccines could eliminate the 
disease [94]. Hornless cows are highly desirable by farm-
ers and dehorning is a welfare issue. As for conventional 
alternative strategies, natural knockouts of the CD163 
gene in pigs appear to be exceedingly rare [95]. Polled 
alleles, however, occur in many breeds, including dairy 
breeds conceived as targets of editing, and marker-
assisted selection is already in use in breeding programs 
to promote it, as polled status can be predicted from SNP 
chips used for genomic selection. Simulation studies sug-
gest that an editing-based strategy for promoting polled 
can have better consequences in terms of genetic gain 
and inbreeding than marker-assisted selection [96–98], 
but it remains to be seen whether the technological hur-
dles, regulations, acceptability and ethical issues will be 
resolved in time for polled gene editing to be successful.

However, going beyond monogenic traits to complex 
traits, the lack of other routes to application other than 
gene editing becomes a problem. If editing or marker-
assisted selection are the only applications for knowledge 
of causative variants, and neither is likely to work well 
for complex traits, this limits the applied potential of the 
sequence perspective. Molecular insights about traits in 
farm animals are scientifically interesting, but currently 
have little other applied value. This is often not very 
clear from reading genomic studies, that often prom-
ise improvements to animal breeding without spelling 
out how they will come about. Allow me a personal and 
somewhat embarrassing example: In the introduction 
to my PhD thesis, which was defended in 2015, I wrote 

about the quantitative trait loci that I had identified, and 
speculated about what would be needed for them to be 
used in actual breeding. This discussion was completely 
misguided. It raised true concerns, such as whether the 
association would replicate in a different population, 
whether the underlying variant between shared associa-
tions in different populations are the same, and so on, but 
it missed the mark, because I was not aware that marker-
assisted selection for quantitative traits was essentially 
dead at this point. The quantitative trait locus paradigm 
that I was operating within was dead and buried in ani-
mal breeding, and the first commercial genomic selection 
of poultry was already happening [5].

Most traits of economic relevance to animal breeding 
are affected by many variants of small effects. This poly-
genicity means that in order to know what sequences to 
edit and what to put instead one needs to solve the fine-
mapping problem, to find ways to reliably identify caus-
ative variants, even if they are of moderate effect size. The 
situation is more challenging than with marker-assisted 
selection, where it may be enough to detect a variant in 
close linkage disequilibrium with the genuine causative 
variant. It is still an open question when and how we will 
get detailed enough knowledge of the genomic basis of 
complex traits to do this. It would require a workflow to 
identify causative variants reliably enough to edit them, 
in a very short time compared to current methods where 
thorough characterization of a causative variant takes 
years.

Furthermore, pleiotropy and non-additive effects might 
affect predictability of the outcomes of editing. Because 
the size of the genome and its repertoire of genes is 
limited, genes and pathways are recycled in a context-
dependent manner for many biological functions. This 
suggests that many genetic variants will affect multiple 
traits, likely mediated by gene-regulatory relationships. 
This postulate of “universal pleiotropy” goes back to early 
quantitative genetics [99] and forms part of the more 
recent “omnigenic model” of complex traits [100]. This 
suggests that any use of gene editing needs to be vigi-
lant against side-effects and consider the whole breeding 
goal in a balanced way, as argued by [101]. In the pres-
ence of non-additive effects, the statistical effect of an 
allele substitution depends on the frequency of the inter-
action partners. This means that the net effect of a gene 
edit might change as the population changes, as argued 
by [101, 102]. However, one might argue that we already 
take genomic selection decisions, and thus shift the allele 
frequency of regions associated with large marker effects, 
on the basis of estimates that average over potential 
interactions and are liable to change over time.

The next problem to overcome is how to introduce 
many edits into a breeding program. The challenge 
has two parts: First, multiplex gene editing technically 
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challenging on its own, given that the success rate of a 
biallelic homology-directed repair editing event with 
CRISPR/Cas9 is low. Even if it could be increase to dou-
ble digits, the success rate for multilocus edits would 
scale poorly. Second, integrating gene editing into animal 
breeding programs would involve performing gene edit-
ing at the scale of many animals. Jenko et al. [103] sug-
gested a strategy of promotion of alleles by gene editing, 
where the chosen sires of a breeding program would be 
edited to be homozygous for causative variants that they 
did not already carry. They assumed that causative vari-
ants were known and that sires could be selected before 
they were edited. This would require new reproductive 
technology integrated with genomic selection. Such in 
vitro breeding strategies have been proposed several 
times [24, 104, 105] as extensions of the already advanced 
reproductive technologies used in particular in cattle 
breeding. For example, if an embryo transfer is already 
in use to breed sires for a cattle breeding program, it 
might be possible in the future to use to introduce gene 
editing machinery into the embryo, then biopsy a small 
amount of DNA to both verify the integrity of the edits 
and perform genomic selection. It remains to be seen, if 
this strategy becomes technologically feasible, what num-
bers of edited embryos and what levels of failure of edit-
ing would be acceptable. The failure rate of gene editing 
technologies are currently high, and that may lead to high 
costs and loss of selection response [96].

Johnsson et al. proposed removal of deleterious alleles 
[106], reasoning that damaging variants might be easier 
to identify from sequence data than causative variants 
for quantitative traits, and that recessive deleterious 
alleles may be common in farm animal populations due 
to ineffective natural selection and the large impact of 
genetic drift. While that assumption may be true, there 
is currently no workflow for large-scale identification 
of deleterious variants in place, and when such variants 
are detected, marker-assisted selection is more attractive 
than gene editing.

In summary, the sequence perspective faces challenges, 
not just within genomics (the fine mapping problem) but 
also within reproductive technology and breeding pro-
gram design (the problem of multiplex editing). Gene 
editing of very large-effect variants is somewhat akin to 
marker-assisted selection, where there are reliable work-
flows for causative variant identification, and individual 
effects may be dramatic enough to justify editing. How-
ever, gene editing of causative variants for complex traits 
appears to fraught with problems to be possible within 
the foreseeable future. Perhaps finding a promising route 
to application for the sequence perspective will require a 
shift in the thinking of the field that we are not yet see-
ing, similar to the shift from marker-assisted to genomic 
selection.

Conclusions
In conclusion, there are (at least) two ways to think of 
genomics in animal breeding, that are helpful in under-
standing how genomic technologies have changed and 
may continue to change animal breeding. Currently, tools 
derived from the statistical perspective are doing the 
heavy lifting in breeding practice, in the form of genomic 
selection. With the advent of new technologies, the 
sequence perspective could make an impact in the future, 
if it can overcome the twin problems of how to identify 
causative variants for complex traits and how to intro-
duce them into animals, both at scale.
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