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Abstract 

Background Kawasaki disease (KD) is a systemic vasculitis of unknown etiology affecting mainly children. Studies 
have shown that the pathogenesis of KD may be related to autophagy. Using bioinformatics analysis, we assessed the 
significance of autophagy-related genes (ARGs) in KD.

Methods Common ARGs were identified from the GeneCards Database, the Molecular Signatures Database 
(MSigDB), and the Gene Expression Omnibus (GEO) database. ARGs were analyzed by Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) enrichment analysis and protein–protein interaction (PPI) network 
analysis. Furthermore, related microRNAs (miRNAs), transcription factors (TFs), and drug interaction network were pre-
dicted. The immune cell infiltration of ARGs in tissues was explored. Finally, we used receiver operating characteristic 
(ROC) curves and quantitative real-time PCR (qRT-PCR) to validate the diagnostic value and expression levels of ARGs 
in KD.

Results There were 20 ARGs in total. GO analysis showed that ARGs were mainly rich in autophagy, macro-
autophagy, and GTPase activity. KEGG analysis showed that ARGs were mainly rich in autophagy—animal and the 
collecting duct acid secretion pathway. The expression of WIPI1, WDFY3, ATP6V0E2, RALB, ATP6V1C1, GBA, C9orf72, 
LRRK2, GNAI3, and PIK3CB is the focus of PPI network. A total of 72 related miRNAs and 130 related TFs were predicted 
by miRNA and TF targeting network analyses. Ten pairs of gene–drug interaction networks were also predicted; 
immune infiltration analysis showed that SH3GLB1, ATP6V0E2, PLEKHF1, RALB, KLHL3, and TSPO were closely related 
to CD8 + T cells and neutrophils. The ROC curve showed that ARGs had good diagnostic value in KD. qRT-PCR showed 
that WIPI1 and GBA were significantly upregulated.

Conclusion Twenty potential ARGs were identified by bioinformatics analysis, and WIPI1 and GBA may be used as 
potential drug targets and biomarkers.
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Introduction
Kawasaki disease (KD) is a vasculitis that primarily 
affects the coronary arteries [1]. It can cause acquired 
heart disease in children [2]. Previous studies suggested 
that 25% of KD patients are not timely diagnosed and 
treated, leading to coronary artery disease (CAD) and 
possibly even sudden death [3]. However, the pathogen-
esis of KD is not clear. It is currently considered to be 
related to inflammatory, immune, and genetic factors. 
Further study of its pathogenesis is necessary to facilitate 
early diagnosis and develop better treatment strategies.
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Autophagy is an evolutionarily conserved catabolic 
process that maintains the dynamic balance of the inter-
nal environment [4]. Under the regulation of autophagy-
related genes (ARGs), intracellular bilateral membrane 
structures encapsulate substances and organelles to be 
degraded and thereby form autophagosomes, which then 
fuse with lysosomes, forming autolysosomes, which per-
form cellular metabolism through the action of hydro-
lytic enzymes [5]. A previous study has shown that 
autophagy is related to inflammatory diseases, cardiovas-
cular diseases, neurodegenerative diseases, and cancer 
[6]. KD can easily damage vascular endothelial cells and 
cardiomyocytes, and one study has reported that KD may 
lead to vascular endothelial cell injury through autophagy 
[6]. Mouse experiments have confirmed that inhibition 
of autophagy can protect the vascular endothelium [7]. 
Although high-throughput sequencing is often employed 
to identify disease targets, the relationship between KD 
and autophagy still needs to be further explored.

In the present study, we identified ARGs and con-
ducted Gene Ontology (GO) and Kyoto Encyclopedia 
of Genes and Genomes (KEGG) enrichment analysis. In 
addition, we constructed a protein–protein interaction 
(PPI) network of differentially expressed genes (DEGs) 
between the KD and control groups using the STRING 
database, we predicted ARG-targeted microRNAs (miR-
NAs) and transcription factors (TFs), and we constructed 
a gene–drug interaction network. Moreover, we exam-
ined immune cell infiltration in KD, and the expression 
levels of ARGs were analyzed in KD patients and healthy 
controls. In conclusion, we analyzed the roles of ARGs in 
KD to understand the pathogenesis of KD.

Materials and methods
Data acquisition and processing
We acquired the KD-related datasets GSE68004 [8] 
and GSE73461 [9] from the Gene Expression Omnibus 
(GEO) database (https:// www. ncbi. nlm. nih. gov/ geo/) 
[10] via the GEOquery package [11]. The Homo sapiens 
dataset GSE68004 was obtained from the data platform 
GPL10558, containing a total of 162 samples, comprising 
37 control and 125 KD samples. We eliminated samples 
that were positive for adenovirus, group A Streptococ-
cus, and/or other diseases from the dataset. For the sub-
sequent analysis, 55 KD samples and 37 controls were 
used. The H. sapiens dataset GSE73461 was obtained 
from the data platform GPL10558, containing a total of 
459 samples, comprising 55 control and 404 KD sam-
ples. We removed samples that were positive for bacte-
rial infections, viral infections, inflammatory diseases, 
and/or uncertain bacterial or viral etiological infections, 
as well as samples containing missing data. For the sub-
sequent analysis, 77 KD samples and 55 control samples 

were used. We corrected and normalized the datasets 
GSE68004 and GSE73461 by the R package limma [12].

Identification of ARGs
Based on the annotation information of GSE68004 and 
GSE73461 samples, we divided the samples into normal 
and KD groups. We employed the R package limma to 
perform differential expression analysis of genes in differ-
ent groups, setting |log(fold change)|> 1 and Padj < 0.05 
as the threshold criteria. Genes with log(fold change) > 1 
were upregulated, and genes with log(fold change) <  − 1 
were downregulated. The differential expression analysis 
results were visualized using the R package pheatmap, 
and heatmaps and volcano maps were plotted using the 
R package ggplot2. We took the intersection of genes that 
were differentially expressed in both datasets for subse-
quent analysis.

The GeneCards database (https:// www. genec ards. org/) 
[13] provides comprehensive information about human 
genes. The Molecular Signatures Database (MSigDB) [14] 
contains over 6700 datasets from the canonical pathway 
and publication experimental characterization collec-
tions. We downloaded the list of autophagy-associated 
genes from the GeneCards database and the annotated 
gene set of MSigDB using the term “autophagy” as a 
search term. We obtained 7236 genes associated with 
autophagy from the GeneCards database and 505 genes 
associated with autophagy from the MSigDB database. 
We intersected the sets of ARGs from different databases 
and obtained a total of 473 genes. We obtained the DEGs 
associated with autophagy in KD by intersecting the 
genes that were differentially expressed in both datasets 
with the genes associated with autophagy.

GO and KEGG enrichment analysis
GO annotation analysis [15] is a common method for 
enrichment studies. The KEGG database [16] contains 
information about genomes and biological pathways. 
GO annotation analysis and KEGG pathway enrichment 
analysis of DEGs were conducted using the R package 
clusterProfiler [17]. P < 0.05 was considered to indicate 
statistical significance.

Construction of a PPI network and hub gene identification
The STRING database (https:// cn. string- db. org/) [18] 
can be used to predict PPI networks. A PPI network 
was built between the KD and normal groups using the 
STRING database with a coefficient of 0.4. We exported 
PPI results, visualized them using Cytoscape software 
[19], and screened the genes in the top 10 PPI relation-
ships using the cytoHubba plugin [20].

https://www.ncbi.nlm.nih.gov/geo/
https://www.genecards.org/
https://cn.string-db.org/
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Construction of mRNA–miRNA and mRNA–TF networks
To comprehensively and accurately mine the regulatory 
relationships between mRNAs and miRNAs and between 
mRNAs and TFs in KD, we predicted the target miRNAs 
of ARGs in KD according to the miRWalk [21], miRDB 
[22], miRTarBase [23], and starBase [24] databases. miR-
NAs identified in all four databases were considered to 
be targeted miRNAs of ARGs in KD. The target TFs of 
ARGs in KD were predicted based on the hTFtarget [25] 
and knockTF databases, and TFs identified in both data-
bases were considered to be targeted TFs of ARGs in KD. 
We constructed miRNA–mRNA and mRNA–TF interac-
tion networks via Cytoscape.

Construction of target gene–drug networks
The Drug–Gene Interaction Database (DGIdb) version 
3.0 [26] is an open-source project that helps users mine 
existing resources and generate hypotheses about how 
genes can be used as targets for drug development. To 
explore the interactions between genes and drugs, we 
constructed a gene–drug network for autophagy-related 
DEGs in KD using the following parameter settings: 
Preset Filters, FDA Approved; Advanced Filters, Source 
Databases, 22 of 22; Gene Categories, 41 of 41; Interac-
tion Types, 51 of 51. Cytoscape software was used to vis-
ualize the gene–drug network.

Immune cell infiltration analysis
CIBERSORT [27] was used to analyze the proportions 
of different immune cell types based on gene expres-
sion data. We used the R software CIBERSORT pack-
age for the gene expression matrix data, combined with 
the LM22 signature gene matrix, and filtered the output 
samples with P < 0.05 to derive the immune cell infiltra-
tion matrix. Heatmaps were generated using the R pack-
age ggplot2 to show the infiltration of the 22 immune cell 
types in each sample.

Quantitative real‑time PCR (qRT‑PCR)
From March 2022 to September 2022, we collected 
10 whole blood samples, comprising five KD and five 
healthy control samples, from the Xianning Central 
Hospital of Hubei, China. Samples were from patients 
aged 8 months to 6 years. We collected 3–5 mL whole 
blood samples in the tubes containing EDTA from all 
the participants and submitted them to white blood 
cell (WBC) enrichment. Total RNA was extracted from 
leukocytes of children with KD and healthy controls, 
and blood samples from KD children were collected 
before intravenous immunoglobulin (IVIG) and aspirin 
treatment. Reverse transcription was performed using 
the Servicebio® RT First Strand cDNA Synthesis Kit 

(Servicebio, Wuhan, China). Quantitative PCR (qPCR) 
was performed using 2 × SYBR Green qPCR Master 
Mix (None ROX) (Servicebio, Wuhan, China) follow-
ing the manufacturer’s instructions. The thermocycling 
conditions were as follows: initial activation at 95 °C for 
30  s, followed by 40 cycles at 95  °C for 15  s, 60  °C for 
30 s, and 60 °C for 30 s. GAPDH was used as the inter-
nal reference for data normalization. Relative expres-
sion was calculated by the 2 − ΔΔCt method. Primers 
are listed in Table S1.

Statistical analysis
Receiver operating characteristic (ROC) curve analysis 
was conducted to predict dichotomous outcome events 
with continuous variables and to evaluate the degree of 
good or bad predictor variables. We plotted ROC curves 
using the R package pROC [28] and calculated the area 
under curve (AUC) values to assess the diagnostic per-
formance of each KD ARG. AUC > 0.9 indicates that the 
gene has a good diagnostic effect. All calculations and 
statistical analyses were performed using R (https:// 
www.r- cret. org/, version 4.0.2). For the comparison of 
continuous variables between the two groups, the sta-
tistical significance of normally distributed variables was 
estimated by the independent Student t-test, and the 
differences between non-normally distributed variables 
were analyzed by the Mann–Whitney U test (i.e., Wil-
coxon rank sum test). All statistical tests were two-sided. 
Differences were considered statistically significant at 
P < 0.05.

Results
Identification of genes associated with autophagy in KD
A flowchart of the present study is shown in Fig.  1A. 
Before data analysis, we performed corrections on the 
datasets GSE68004 and GSE73461 (Fig.  1B, C, D, E) to 
make the expression levels consistent. We performed dif-
ferential expression analysis between the KD and control 
groups using the R package limma. In dataset GSE68004, 
1879 DEGs were identified, comprising 1020 upregu-
lated genes and 895 downregulated genes (Fig. 2A, C). In 
dataset GSE73461, 1295 DEGs were identified, compris-
ing 835 upregulated genes and 460 downregulated genes 
(Fig. 2B, D). We generated volcano plots and heatmaps to 
visualize the results.

To identify genes related to autophagy, we 
searched the GeneCards and MSigDB databases 
with “autophagy” as the search keyword and down-
loaded the list of the autophagy-associated genes. We 
intersected ARGs obtained from the GeneCards and 
MSigDB databases and obtained 473 ARGs (Fig.  2E, 
Supplementary Table 2).

https://www.r-cret.org/
https://www.r-cret.org/
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Fig. 1 Study flowchart and box diagram of data correction. A Study flowchart. B, C Boxplot of dataset GSE68004 before correction (B) and after 
correction (C). D, E Boxplot of dataset GSE73461 before correction (D) and after correction (E). KD samples are shown in blue, and control samples 
are shown in yellow
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We intersected the DEGs in datasets GSE68004 
and GSE73461 to obtain 815 DEGs (Fig.  2F). We then 
intersected the DEGs in both datasets with ARGs, 
and obtained the following 20 genes associated with 
cellular autophagy in KD: TSPO, SH3GLB1, FBXL2, 
LRRK2, WIPI1, GBA, CAMKK2, C9orf72, QSOX1, 
RALB, KLHL3, PIK3CB, ATP6V0E2, DRAM1, EPAS1, 

ATP6V1C1, GNAI3, DEPP1, WDFY3, and PLEKHF1 
(Fig. 2G, H, Supplementary Table 3).

Functional enrichment analysis of ARGs
We performed GO enrichment analysis of ARGs 
in KD. In the biological process category, ARGs 
were enriched in processes such as autophagy and 

Fig. 2 Differential expression and Venn diagram. A, B Volcano plot showing the differential expression analysis results for datasets GSE68004 (A) 
and GSE73461 (B). C Heatmap showing the differential expression analysis results for datasets GSE68004 (C) and GSE73461 (D). E Venn diagram 
showing the numbers of ARGs obtained from the MSigDB database, the GeneCards database, and both. F Venn diagram showing the numbers of 
DEGs in dataset GSE68004, dataset GSE73461, and those in both. G Venn diagram showing the numbers of genes that were differentially expressed 
in both datasets, ARGs that were obtained from both databases, and their intersection, i.e., ARGs in both databases that were differentially expressed 
in both datasets. H Venn diagram showing the numbers of DEGs of dataset GSE68004, DEGs of dataset GSE73461, ARGs in the MSigDB dataset, and 
ARGs in the GeneCards database
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macro-autophagy. In the cellular component category, 
ARGs were enriched in components such as the vacu-
olar membrane and the autophagosome membrane. In 
the molecular function category, ARGs were enriched 
in proton-exporting ATPase and GTPase activity. 
Next, we performed KEGG pathway enrichment anal-
ysis of ARGs in KD. ARGs in KD were enriched in 
autophagy—animal and the collecting duct acid secre-
tion pathway (Fig.  3). The GO and KEGG enrichment 
analysis results are shown in Supplementary Table 4.

Construction of the PPI network
We constructed a PPI network behind the ARGs in KD 
based on the STRING database, which contains a total 
of 12 nodes and 10 edges (Fig. 4A). We used Cytoscape 
software to visualize the obtained PPI network, removed 
the non-interacting proteins, and filtered the top 10 
hub genes in the network by the cytoHubba plugin 
(Fig.  4B). From the PPI network diagram, we can see 
that among the 20 ARGs, TSPO, QSOX1, PLEKHF1, 
FBXL2, CAMKK2, KLHL3, EPAS1, and DEPP1 are 

Fig. 3 Functional enrichment analysis of ARGs in KD. A GO and KEGG enrichment bubble maps of ARGs in KD. B GO and KEGG enrichment 
circle maps of ARGs in KD. C Functional enrichment Circos maps of the GSE68004 dataset combined with log(fold change) values. D Functional 
enrichment Circos maps of the GSE73461 dataset combined with log(fold change) values
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Fig. 4 PPI network and targeting network of ARGs in KD. A PPI network of ARGs in KD based on the STRING database. B Top 10 key genes of the 
PPI network. C Network of ARGs and targeted miRNAs. D Network of ARGs and targeted TFs. E Network of ARGs and targeted drugs. Blue oval dots 
represent ARGs; green rounded rectangles represent miRNAs targeted by ARGs; orange quadrangles represent TFs targeted by ARGs; and yellow 
hexagons represent gene-related drugs
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not associated with other genes, and the genes WIPI1, 
WDFY3, ATP6V0E2, RALB, ATP6V1C1, GBA, C9orf72, 
LRRK2, GNAI3, and PIK3CB had the strongest protein 
interactions. The protein interactions among ARGs in 
KD are shown in Supplementary Table 5.

Construction of mRNA–miRNA and mRNA–TF network
To comprehensively and accurately mine the regulatory 
relationship between mRNA and miRNA and between 
mRNA and TFs in KD, we predicted the target miRNAs 
of ARGs in KD using the miRWalk, miRDB, miRTar-
Base, and starBase databases. miRNAs identified in all 
four databases were considered to be miRNA targets of 
ARGs in KD. The target TFs of ARGs in KD were pre-
dicted using the hTFtarget and knockTF databases, and 
TF identified in both databases were considered to be TF 
targets of ARGs in KD. We constructed miRNA–mRNA 
and mRNA–TF interaction networks using Cytoscape.

From the mRNA–miRNA network, a total of 72 miR-
NAs were predicted to be targeted by 12 ARGs in KD, 
and eight genes (GBA, TSPO, WIPI1, ATP6V0E2, 
LRRK2, PIK3CB, FBXL2, and DEPP1) were not predicted 
to target miRNAs (Fig.  4C). From the mRNA–TF net-
work diagram, we can see that 130 TFs were predicted to 
be targeted by 19 ARGs in KD, and the gene KLHL3 was 
not predicted to target any TFs (Fig. 4D). The interaction 
relationships between ARGs and miRNAs and TFs in KD 
are shown in Supplementary Tables 6 and 7.

Construction of a target gene–drug network
We predicted drugs that may interact with ARGs in KD 
based on the DGIdb database. We obtained 10 gene–
drug pairs including three genes (DRAM1, LRRK2, and 
PIK3CB) and 10 drugs (cisplatin, vandetanib, palbociclib, 
copanlisib, midostaurin, octreotide, idelalisib, doxoru-
bicin, lovastatin, and alpelisib). We then constructed a 
gene–drug interaction network using Cytoscape soft-
ware (Fig.  4E). Among 20 ARGs, 17 genes (SH3GLB1, 
GBA, RALB, GNAI3, TSPO, WIPI1, QSOX1, ATP6V0E2, 
ATP6V1C1, C9orf72, PLEKHF1, WDFY3, FBXL2, 
CAMKK2, KLHL3, EPAS1, and DEPP1) were not pre-
dicted to interact with drugs. The interactions between 
ARGs and drugs in KD are shown in Supplementary 
Table 8.

Diagnostic significance of ARGs in KD
To determine the diagnostic value of ARGs, we plotted 
a ROC curve and calculated the AUC. P-values of < 0.05 
were considered to indicate statistical significance. In 
dataset GSE68004, 18 genes (SH3GLB1, GBA, RALB, 
DRAM1, GNAI3, TSPO, WIPI1, QSOX1, ATP6V1C1, 
LRRK2, C9orf72, PIK3CB, EPAS1, WDFY3, FBXL2, 
CAMKK2, EPAS1, and DEPP1) were upregulated and 

two genes (ATP6V0E2 and HL3) were downregulated 
in KD patients (Fig. 5A). In dataset GSE73461, 17 genes 
(SH3GLB1, GBA, RALB, DRAM1, GNAI3, TSPO, 
WIPI1, QSOX1, ATP6V1C1, LRRK2, C9orf72, PIK3CB, 
WDFY3, FBXL2, CAMKK2, EPAS1, and DEPP1) were 
upregulated and three genes were downregulated in 
patients with KD (Fig. 5B).

From the ROC curves, we can see that in data-
set GSE68004, genes SH3GLB1 (AUC = 0.989), 
GBA (AUC = 0.978), RALB (AUC = 0.975), DRAM1 
(AUC = 0.968), GNAI3 (AUC = 0.948), TSPO 
(AUC = 0.94), WIPI1 (AUC = 0.947), QSOX1 
(AUC = 0.946), ATP6V0E2 (AUC = 0.953), ATP6V1C1 
(AUC = 0.935), LRRK2 (AUC = 0.908), C9orf72 
(AUC = 0.909), PIK3CB (AUC = 0.921), PLEKHF1 
(AUC = 0.958), and WDFY3 (AUC = 0.908) had a good 
diagnostic effect for KD patients (Fig. 5C–E). In addition, 
genes FBXL2 (AUC = 0.888), CAMKK2 (AUC = 0.849), 
KLHL3 (AUC = 0.879), EPAS1 (AUC = 0.781), and 
DEPP1 (AUC = 0.74) were generally effective for the 
diagnosis of KD patients (Fig. 5F). In dataset GSE73461, 
genes SH3GLB1 (AUC = 0.983), GBA (AUC = 0.955), 
RALB (AUC = 0.928), DRAM1 (AUC = 0.966), 
GNAI3 (AUC = 0.915), TSPO (AUC = 0.949), WIPI1 
(AUC = 0.917), QSOX1 (AUC = 0.92), ATP6V0E2 
(AUC = 0.914), ATP6V1C1 (AUC = 0.927), PIK3CB 
(AUC = 0.906), WDFY3 (AUC = 0.91), and KLHL3 
(AUC = 0.918) had a good diagnostic effect for patients 
with KD (Fig.  5G–I). Genes LRRK2 (AUC = 0.885), 
C9orf72 (AUC = 0.89), PIK3CB (AUC = 0.833), FBXL2 
(AUC = 0.878), CAMKK2 (AUC = 0.885), and DEPP1 
(AUC = 0.899) were generally effective for patients 
with KD (Fig.  5I–J), and the diagnostic value of EPAS1 
(AUC = 0.692) for KD was poor (Fig. 5J).

Immune cell infiltration environment of ARGs
We determined the expression levels of ARGs in 22 
infiltrating immune cell types using the CIBERSORT 
algorithm for datasets GSE68004 and GSE73461. The 
relationship between ARGs in KD and immune cell infil-
tration was investigated by Spearman analysis.

The heatmap of the correlation between ARGs and 
immune cells in KD showed that in dataset GSE68004, 
the genes SH3GLB1 (r = 0.870377417, Padj = 3.37E − 24) 
and ATP6V0E2 (r =  − 0.839416377, Padj = 4.06E − 15) 
were negatively correlated with CD8 + T cells, and 
PLEKHF1 (r =  − 0.818109231, Padj = 1.03E − 12) 
was negatively correlated with neutrophils. The genes 
SH3GLB1 (r = 0.870377417, Padj = 3.37E − 24), RALB 
(r = 0.887119613, Padj = 1.11E − 26), and ATP6V0E2 
(r = 0.821245592, Padj = 1.64E − 15) showed a posi-
tive correlation with neutrophils (Fig.  6A). In data-
set GSE73461, the genes ATP6V0E2 (r = 0.835525466, 
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Fig. 5 Diagnostic significance of ARGs in KD. A, B Boxplots of differential expression of ARGs in datasets GSE68004 (A) and GSE73461 (B). C–F ROC 
curves for genes SH3GLB1, GBA, RALB, DRAM1, and GNAI3 (C); TSPO, WIPI1, QSOX1, ATP6V0E2, and ATP6V1C1 (D); LRRK2, C9orf72, PIK3CB, PLEKHF1, 
and WDFY3 (E); and FBXL2, CAMKK2, KLHL3, EPAS1, and DEPP1 (F) in dataset GSE68004. (G–J). ROC curves for genes SH3GLB1, GBA, RALB, DRAM1, 
and GNAI3 (G); TSPO, WIPI1, QSOX1, ATP6V0E2, and ATP6V1C1 (H); LRRK2, C9orf72, PIK3CB, PLEKHF1, and WDFY3 (I); and FBXL2, CAMKK2, KLHL3, 
EPAS1, and DEPP1 (J) in dataset GSE73461. *P < 0.05, *P < 0.01, *P < 0.001
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Padj = 5.39E − 33), PLEKHF1 (r = 0.807322695, 
Padj = 5.92E − 29), and KLHL3 (r = 0.807131695, 
Padj = 6.26E − 29) showed a positive correlation with 
CD8 + T cells; and SH3GLB1 (r =  − 0.845103861, 
Padj = 1.52E − 34), RALB (r =  − 0.837560412, 
Padj = 2.58E − 33), and TSPO (r =  − 0.838906949, 
Padj = 1.08E − 24) showed a negative correlation with 
CD8 + T cells (Fig.  6B). The heatmap of the correlation 
between the 22 immune cell types reveals the follow-
ing. In dataset GSE68004, activated dendritic cells and 

CD8 + T cells (r =  − 0.686568419, Padj = 0.010562421), 
resting memory CD4 + T cells (r =  − 0.601812691, 
Padj = 0.001511373), and CD8 + T cells and gamma-
delta T cells (r =  − 0.65582577, Padj = 1.07E − 12) pre-
sented a negative correlation, whereas resting memory 
CD4 + T cells and CD8 + T cells (r = 0.531473662, 
Padj = 4.53E − 07), activated dendritic cells and rest-
ing mast cells (r = 0.535182215, Padj = 3.33E − 07), and 
gamma-delta T cells (r = 0.519659802, Padj = 1.19E − 06) 
presented a positive correlation (Fig.  6C). In dataset 

Fig. 6 Immune cell infiltration of GSE68004 and GSE73461. A, B Heatmap of the correlation between ARGs and immune cells in KD in datasets 
GSE68004 and GSE73461. C, D Heatmap of the correlation between immune cells in datasets GSE68004 and GSE73461
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GSE73461, CD8 + T cells showed a negative correlation 
with monocytes (r =  − 0.667475424, Padj = 9.71E − 16), 
M0 macrophages (r =  − 0.698019044, Padj = 5.79E − 18), 
and neutrophils (r =  − 0.711085718, Padj = 5.31E − 19), 
whereas M0 macrophages showed a positive correlation 
with neutrophils (r = 0.513990197, Padj = 1.18E − 07) 
and activated dendritic cells (r = 0.514444933, 
Padj = 1.13E − 07), and M1 macrophages showed 
a positive correlation with resting dendritic cells 
(r = 0.563810017, Padj = 7.94E − 10) (Fig. 6D).

Validation of ARG expression in KD
The expression levels of WIPI1, WDFY3, ATP6V0E2, 
RALB, KLHL3, GBA, C9orf72, LRRK2, GNAI3, and 
PIK3CB were examined by qRT-PCR in five KD blood 
samples and five control blood samples. Two genes 
showed a statistical difference (P < 0.05): WIPI1 and GBA 
were upregulated in KD samples compared with control 
samples. WDFY3, ATP6V0E2, RALB, KLHL3, C9orf72, 
LRRK2, GNAI3, and PIK3CB showed no significant dif-
ference between KD samples and control samples (Fig. 7).

Discussion
KD may damage the coronary arteries. IVIG treatment 
reduces the incidence of coronary artery aneurysm 
(CAA) from 25 to 4% [29]. Some patients are at risk of 
CAA in adulthood despite systemic treatment [30]. 
Although the incidence of CAA has decreased dramati-
cally and many treatment options are available, CAA 
is still not completely preventable, and it can have fatal 
complications [31–33]. The pathogenesis of KD is not yet 
clear. Genetic factors might be closely related to KD sus-
ceptibility. Genetic variants in ITPKC and CASP3 might 
promote excessive inflammatory responses by activating 
the T cell Ca2 + /NFAT signaling pathway [34, 35], and 
a study of cyclosporine, an inhibitor of this pathway, has 
been carried out in Japan in a randomized, multicenter 
trial demonstrating that combining cyclosporine with 
IVIG can reduce the incidence of CAA [36]. Moreover, 
the symptoms of KD are not specific, so patients are eas-
ily misdiagnosed, leading to an increased incidence of 
CAA. Therefore, the identification of molecular markers 
for early diagnosis is crucial to KD treatment and CAA 
prevention.

Fig. 7 Validation of the differential expression of potential diagnostic markers, WIPI1, WDFY3, ATP6V0E2, RALB, KLHL3, GBA, C9orf72, LRRK2, GNAI3, 
and PIK3CB, via qRT-PCR. *P < 0.05, **P < 0.01; ns: not significant
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Autophagy is a conserved lysosomal degradation pro-
cess that plays a key role in adaptation to metabolic 
stress, removal of damaged organelles, pathogen defense, 
and nutrient reutilization [37]. A recent study pointed 
out that autophagy is linked to many diseases, including 
cancer, inflammatory diseases, autoimmune diseases, and 
neurodegenerative diseases. Enhancement of autophagy/
mitophagy has been shown to effectively reduce the 
incidence of vasculitis in KD [38]. Das et  al. demon-
strated that IVIG may play a role by inducing autophagy 
in peripheral blood mononuclear cells [39]. Resveratrol 
alleviates myocardial injury caused by KD by inhibiting 
autophagy [40]. Some studies have explored the mecha-
nisms underlying the roles of ARGs in KD [6, 41], but no 
studies have investigated the mechanisms of action of 
ARGs in KD through bioinformatics analysis. Our bio-
informatics analysis identified 20 potential ARGs associ-
ated with KD.

GO analysis revealed that these ARGs were mainly 
involved in biological processes such as autophagy and 
macro-autophagy. KEGG pathway analysis showed that 
most DEGs were involved in autophagy—animal. Qi et al. 
found that ginsenoside Rb1 may inhibit CAL inflamma-
tion by regulating the AMPK/mTOR/P70S6 autophagy 
signaling pathway [42].

We then established a PPI network to analyze the inter-
action of ARGs in KD and screened the top 10 hub genes 
(WIPI1, WDFY3, ATP6V0E2, RALB, ATP6V1C1, GBA, 
C9orf72, LRRK2, GNAI3, and PIK3CB) using Cytoscape 
software and the cytoHubba plugin. We also detected 
potential miRNAs, TFs, and drugs associated with KD, 
analyzed the expression levels of ARGs in tissue-infiltrat-
ing immune cells, and evaluated the diagnostic value of 
ARGs. These data improve our understanding of the eti-
ology of KD.

WD repeat domain, phosphoinositide interacting 
1 (WIPI1) is a component of the autophagic machin-
ery and is activated downstream of the ULK1 and PI3 
kinases to participate in autophagy. WIPI1 mRNA 
expression can be used as an indicator of autophago-
some formation [43, 44], WIPI1 also promotes melanase 
transcription and melanosome formation by inhibiting 
TORC1, a process different from starvation-induced 
autophagy [45]. WD repeat and FYVE domain con-
taining 3 (WDFY3) is essential for macro-autophagy, 
which is important for brain and neural development, 
and could also activate the TNFSF11/RANKL–TRAF6 
pathway to regulate osteoclastogenesis [46, 47]. ATPase 
H + transporting V0 subunit e2 (ATP6V0E2) is an 
enzyme transporter that is widely expressed in lys-
osomes, and Anlotinib can activate lysosomal func-
tion. ATP6V0E2 has been identified as the key target of 
Anlotinib by transcriptome sequencing, and Anlotinib 

has been applied in the treatment of lung cancer [48]. 
RAS-like proto-oncogene B (RALB) is a multifunc-
tional GTPase, and the NLRP3 inflammasome pro-
motes RALB activation and autophagosome formation. 
In turn, autophagy limits interleukin-1β (IL-1β) pro-
duction [49]. Lee et  al. showed that the inflammatory 
cytokine IL-1β is related to the development of KD in 
a mouse model [50]. Glucosylceramidase beta 1 (GBA) 
encodes a lysosomal membrane protein. Homozygous 
mutations in GBA lead to Gaucher disease, and het-
erozygous GBA mutations lead to Parkinson’s disease 
by inhibiting autophagy [51]. C9orf72-SMCR8 com-
plex subunit (C9orf72) hexanucleotide expansion is the 
most common genetic cause of familial amyotrophic 
lateral sclerosis (ALS), and IL-1β levels are increased 
in the cerebrospinal fluid of ALS patients [52]. In KD, 
IL-1β decreases the anti-inflammatory effects of IVIG 
and thus increases drug resistance through activation 
of the TFs C/EBPβ and C/EBPδ [53]. We speculate that 
C9orf72 might be related to the occurrence of KD, but 
this hypothesis requires experimental verification. Leu-
cine-rich repeat kinase 2 (LRRK2) can participate in 
inflammatory responses in vivo through the MAPK and 
NF-κB signaling pathways [54], Zhou et  al. found that 
IVIG may reduce CAL development in KD by inhibiting 
NF-κB and p38 MAPK activation [55]. Downregulation 
of the LRRK2 gene in primary microglia or inhibition 
of its kinase activity reduced the production of tumor 
necrosis factor-alpha (TNFα) and IL-1β [10, 18]. G 
protein subunit alpha I3 (GNAI3) specifically regu-
lates neutrophil chemotaxis through PI3Kγ signaling 
[56], and neutrophils may mediate vascular endothe-
lial injury, which is the main cause of CAL secondary 
to KD. Integrin αIIbβ3 mediates atherothrombosis, and 
the key role of phosphatidylinositol-4,5-bisphosphate 
3-kinase catalytic subunit beta (PIK3CB) in regulating 
the formation and stability of adhesion bonds of inte-
grin αIIbβ3 may be a new target for future antithrom-
botic therapy [57]. In atherosclerosis, inhibition of the 
PI3K/Akt/mTOR pathway by microRNA-126 attenuates 
endothelial cell injury [58].

MiRNAs are endogenous small, non-coding RNAs. We 
constructed an mRNA–miRNA network and predicted a 
total of 72 target miRNAs, some of which have been vali-
dated. hsa-miR-19a-3p was suggested by Jone et al. to be 
a possible biomarker to distinguish KD from other infec-
tious diseases [59]. Another study showed that hsa-miR-
222-3p is useful for the early diagnosis of KD [60]. We 
further constructed TF–mRNA networks and predicted 
a total of 130 target TFs.

In a rat study, octreotide was shown to exert signifi-
cant anti-inflammatory effects by reducing the levels 
of inflammatory cytokines such as TNF-α [61], and 
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another rat study showed that octreotide inhibited the 
renal inflammatory response after hepatic ischemia and 
reperfusion injury (HIR) through the autophagic path-
way [62]. PI3K inhibitors, such as idelalisib, copanlisib, 
and alpelisib, are used for the treatment of tumors; in 
addition, they may have prospects in the treatment of 
autoimmune diseases, inflammatory diseases, and car-
diovascular diseases [63]. Several experimental and 
clinical studies have shown that statins such as lovasta-
tin also exert anti-inflammatory and immunomodula-
tory effects [64].

We used the CIBERSORT package to evaluate the 
types of infiltrated immune cells in KD patients and 
controls and the correlation with ARG expression. 
Our analysis showed that SH3GLB1, ATP6V0E2, PLE-
KHF1, RALB, KLHL3, and TSPO were closely related 
to CD8 + T cells and neutrophils. A previous study 
showed that neutrophil counts increased rapidly in the 
acute phase of KD and decreased significantly in the 
recovery phase [65], and a mouse study showed that 
CD8 + T cells played a key role in KD vasculitis [66]. A 
heatmap of immune cell correlation showed that resting 
memory CD4 + T cells and CD8 + T cells were closely 
related to gamma-delta T cells and that CD8 + T cells 
were closely related to monocytes, M0 macrophages, 
and neutrophils. The underlying mechanisms require 
further investigation.

We performed ROC curve analysis of autophagy genes 
in KD to further verify their diagnostic value in KD. In 
dataset GSE68004, the genes SH3GLB1, GBA, RALB, 
DRAM1, GNAI3, TSPO, WIPI1, QSOX1, ATP6V0E2, 
ATP6V1C1, LRRK2, C9orf72, PIK3CB, PIK3CB, and 
WDFY3 had a good diagnostic effect for KD. In dataset 
GSE73461, the genes SH3GLB1, GBA, RALB, DRAM1, 
GNAI3, TSPO, WIPI1, QSOX1, ATP6V0E2, ATP6V1C1, 
PIK3CB, WDFY3, and KLHL3 had a good diagnostic 
effect for KD. We finally examined the expression levels 
of 10 genes by qRT-PCR. The expression levels of WIPI1 
and GBA were consistent with our bioinformatics analy-
sis results.

There are still some limitations in our study. First, the 
prevalence of KD varies by race, but KD samples in the 
GSE dataset are limited to KD samples from Europe and 
the United States. Second, the small sample size verified 
via qRT-PCR may reduce the confidence of the study. We 
will expand the sample size in future studies. Finally, the 
prognostic power of the identified ARGs remains unclear.

Conclusion
A total of 20 ARGs that may be related to KD develop-
ment were identified by bioinformatics analysis. WIPI1 
and GBA may be potential ARGs of KD and should be 
further verified.
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