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Abstract 

Background Autophagy is a highly conserved cellular proteolytic process that can interact with innate immune sign-
aling pathways to affect the growth of tumor cells. However, the regulatory mechanism of autophagy in the tumor 
microenvironment, drug sensitivity, and immunotherapy is still unclear.

Methods Based on the prognostic autophagy-related genes, we used the unsupervised clustering method to divide 
866 ovarian cancer samples into two regulatory patterns. According to the phenotypic regulation pattern formed by 
the differential gene between the two regulation patterns, a risk model was constructed to quantify patients with 
ovarian cancer. Then, we systematically analyzed the relationship between the risk model and immune cell infiltration, 
immunotherapeutic response, and drug sensitivity.

Results Based on autophagy-related genes, we found two autophagy regulation patterns, and confirmed that 
there were differences in prognosis and immune cell infiltration between them. Subsequently, we constructed a risk 
model, which was divided into a high-risk group and a low-risk group. We found that the high-risk group had a worse 
prognosis, and the main infiltrating immune cells were adaptive immune cells, such as Th2 cells, Tgd cells, eosinophils 
cells, and lymph vessels cells. The low-risk group had a better prognosis, and the most infiltrated immune cells were 
innate immune cells, such as aDC cells, NK CD56dim cells, and NK CD56bright cells. Furthermore, we found that the 
risk model could predict chemosensitivity and immunotherapy response, suggesting that the risk model may help to 
formulate personalized treatment plans for patients.

Conclusions Our study comprehensively analyzed the prognostic potential of autophagy-related risk models in ovar-
ian cancer and determined their clinical guiding role in targeted therapy and immunotherapy.

Keywords Autophagy, Ovarian cancer, Tumor microenvironment, Drug sensitivity, Immunotherapy

Introduction
Ovarian cancer is one of the most common malignant 
tumors of female reproductive organs. The prognosis is 
the worst among three common gynecological tumors, 
with incidence rate and mortality increasing year by year 
[1]. Because the ovary is deep in the pelvic cavity, ovar-
ian cancer had no clinical symptoms in the early stage, 
and there was a lack of effective early diagnostic mark-
ers, most patients were diagnosed with advanced dis-
ease. According to cancer statistics in 2020, about 21,750 
patients in the United States were diagnosed with ovarian 
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cancer and 13,940 ovarian cancer-related deaths [2]. 
Although the combination of cytoreductive surgery and 
neoadjuvant chemotherapy increases the survival time 
of patients with ovarian cancer [3], the overall survival 
rate of patients with ovarian cancer is still at a low level 
[4]. The poor prognosis of ovarian cancer was caused by 
many factors, including advanced diagnosis, drug resist-
ance to chemotherapy, and a high recurrence rate after 
treatment [5]. At present, the prognosis of patients with 
ovarian cancer is mainly based on pathological stage and 
differentiation. However, traditional methods could not 
accurately judge the prognosis of patients. Therefore, it’s 
very necessary to build a stable, accurate, and efficient 
prediction model to help doctors improve patients’ treat-
ment plans and prolong patients’ survival time. In recent 
years, great efforts have been made to explore genomic 
mutations, abnormal transcriptome changes, and bio-
logical targets for disease diagnosis and treatment [6]. 
Among them, the important role of autophagy in tumor 
occurrence, metastasis, targeted therapy, and drug resist-
ance has gradually attracted people’s attention.

Autophagy is an important evolutionary process for 
eukaryotes to regulate intracellular substances. In this 
process, damaged proteins or organelles are wrapped in 
double-membrane structured gold-phagocytic vesicles, 
transported to lysosomes (animals), or degraded and 
recycled in vacuoles (yeasts and plants) [7]. Autophagy 
is essential for maintaining homeostasis. Therefore, the 
abnormality of autophagy regulation is related to a vari-
ety of diseases, such as tumors, neurodegenerative dis-
eases, and cardiovascular diseases [8]. Autophagy is like 
a double-edged sword. It can promote or inhibit the 
progress of cancer according to the changes in the sur-
rounding environment. Tumor type, stage, and treatment 
may affect the regulation of autophagy in a tumor. Gener-
ally speaking, autophagy can inhibit the occurrence and 
development of cancer by removing mutated genes, dam-
aged proteins, and heterotypic cells in the body. However, 
in previous studies, the increase in autophagy level can 
usually recycle intracellular macromolecules and orga-
nelles to promote the special needs of tumor growth [7]. 
Many studies have explored the role of some autophagy-
related genes in the occurrence and development of 
ovarian cancer [9, 10]. However, autophagy is a complex 
regulatory mechanism of the body, involving hundreds of 
genes. Previous studies only discussed the regulatory role 
of autophagy in ovarian cancer by changing the expres-
sion level of a single autophagy-related gene, which is not 
comprehensive enough. Constructing a model integrat-
ing multiple autophagy-related genes may improve the 
accuracy of prognosis prediction.

More and more studies show that the occurrence and 
development of the tumor are not only related to genetic 

factors but also inseparable from the control of the 
immune microenvironment [11]. Immunotherapy based 
on immune checkpoint inhibitor (ICB) has been applied 
to the treatment of cancer and achieved good clini-
cal results. However, most patients have a low response 
to immunotherapy [12]. To make better application 
of immunotherapy, we urgently need to analyze the 
immune microenvironment and understand the reasons 
for patients’ low response to ICB. Both autophagy and 
innate immune response can detect changes such as cell 
injury or infection to ensure homeostasis. Recent studies 
have shown that in tumor cells, the autophagy pathway 
is intertwined with pattern recognition receptor (PRR), 
inflammation, and cell death pathway, which can change 
the immunogenicity and antitumor immune response of 
TME, to enhance tumor clearance [13]. Therefore, ana-
lyzing the interaction mechanism between autophagy 
and immune response in the context of tumorigenesis 
may provide a new therapeutic target for enhancing anti-
tumor immunity and immunotherapy.

In this study, we integrated the gene expression profiles 
of seven GSE ovarian cancer cohorts from the GEO data-
base [14] and evaluated the patterns of autophagy regula-
tion. We found that the autophagy regulation pattern was 
not only related to the infiltration of multiple immune 
cell types but also related to the prognosis of patients. 
Then, we analyzed the differentially expressed genes 
(DEGs) between different autophagy regulation patterns 
and constructed a risk score model to quantify the role of 
autophagy in a single ovarian cancer patient. Finally, we 
analyzed the prognostic role of the risk model in patients 
and evaluated its therapeutic role in immunotherapy and 
chemotherapy.

Methods
Data collection and processing of ovarian cancer samples
The clinical data and gene expression information 
of ovarian cancer samples were obtained from GEO 
(https:// www. ncbi. nlm. nih. gov/ geo/) and TCGA(https:// 
portal. gdc. cancer. gov/) databases [15]. In the GEO data-
base, we integrated seven eligible OV cohorts (GSE9891, 
GSE18520, GSE19829, GSE20565, GSE26193, GSE30161, 
GSE26712), and then used the TCGA-OV cohort for 
follow-up validation. The "combat" algorithm of the SVA 
package [16] was used to correct the batch effect caused 
by the system. Data analysis and mapping were com-
pleted by R and R-dependent packages.

We collected the data of the IMvigor 210 cohort [12] 
and GSE78220 cohort [17] for immunotherapy analy-
sis. The expression data and clinical treatment infor-
mation of the IMvigor210 cohort were downloaded 
from http:// resea rch- pub. Gene. com/ imvig or210 coreb 
iolog ies, and the data were normalized by the DEseq2 
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R package. The data of the GSE78220 cohort were 
obtained from the GEO database, and the original data 
was standardized by the limma package.

Unsupervised cluster analysis of autophagy‑related genes
A total of 232 autophagy-related genes were obtained 
from the Human Autophagy Database (HADb, http:// 
www. autop hagy. lu/ index.html). We used a univariate 
Cox regression model to calculate the risk ratio (HR) 
of autophagy-related genes. Then, based on the expres-
sion of autophagy-related genes with prognostic effect 
in 866 ovarian cancer samples in the GEO database, 
unsupervised cluster analysis was used to identify dif-
ferent autophagy regulation patterns, and patients were 
classified for further analysis. We used the consensus 
clustering algorithm of the ConsuClusterPlus package 
to determine the number and stability of clusters and 
repeated it 1000 times to ensure the stability of classifica-
tion [18].

Gene set variation analysis (GSVA)
We used the "GSVA" R package to analyze the biological 
process between autophagy regulation patterns [19]. The 
gene sets "c2. cp.kegg. v7.1" and "h.all.v7.2" were down-
loaded from MSigDB database, and adjust p-value < 0.05 
indicates significant significance. The “clusterPro-
filer “ R package was used to annotate the functions of 
autophagy-related genes with prognostic values.

Evaluate the level of immune cell infiltration
We used the CIBERPORT method to quantify the rela-
tive abundance of invasion of each immune cell type in 
ovarian cancer samples. The input matrix is our gene 
expression matrix, which marks the gene set of each 
TME infiltrating immune cell type, which is derived 
from Zhang’s study, including innate immune cells and 
acquired immune cells [20].

Identification of differentially expressed genes(DEGs) 
between autophagy regulation patterns
We used the limma R package to analyze DEGs 
between different autophagy regulation patterns, and 
P-value < 0.05 was regarded as a significant difference. We 
performed univariate Cox analysis on DEGs, and selected 
DEGs with survival effects for subsequent analysis.

Construct the Prognostic Signature for ovarian cancer 
patients
After multivariate Cox regression analysis of the 
above DEGs, the risk score of each patient was estab-
lished. The risk score was calculated as follows: Risk 
score = n

i=1
Coef i ∗ xi , Where Coef is the coefficient and 

x is the expression value of each gene. Ovarian cancer 

patients were divided into high-risk groups and low-
risk groups according to the median risk score. Then, we 
used the survival curve to evaluate the survival difference 
between the two groups, and the ROC curve to predict 
the diagnostic value of the prognostic signature (with R 
package “time ROC”).

Chemotherapeutic response prediction by Prognostic 
signature
We analyzed the response of each ovarian cancer sam-
ple to chemotherapeutic drugs based on the pharmaco-
metrics database (the Genomics of Drug Sensitivity in 
Cancer (GDSC),https:// www. cance rrxge ne. org/). Using 
the pRRophetic algorithm, a ridge regression model was 
constructed according to the expression profile of the 
GDSC cell line and our mixed gene expression profile to 
predict drug IC50. The parameter settings are as follows: 
Use "combat" to remove the batch effect and tissue type 
of "allSoldTumours,” and other parameters are the default 
values [21].

Statistical analysis
All statistical analyses were performed with R software (R 
4.0.4). Wilcoxon test was used to compare the differences 
between the two samples, the log-rank test was used to 
test the survival curve, and the univariate Cox regression 
model was used to calculate the risk ratio (HR). Pearson 
method was used to calculate the correlation coefficient 
of autophagy-related genes, and the ’survivalroc’ R pack-
age was used to analyze the ROC curve. In addition, 
p-value < 0.05 was considered significant.

Results
Consensus cluster analysis was performed 
by autophagy‑related genes
Seven GEO datasets were selected for analysis (GSE9891, 
GSE18520, GSE19829, GSE20565, GSE26193, GSE30161, 
GSE26712) (Additional Table  1). 232 autophagy-related 
genes were analyzed by univariate cox analysis (Addi-
tional Table  2), and 20 autophagy genes had prognos-
tic values (Additional Table  3 and Additional Fig.  1). 
The above autophagy-related genes were selected for 
follow-up analysis. To explore the correlation between 
autophagy-related genes, we made a Pearson correla-
tion of the expression of 20 autophagy-related genes 
and found that the proportion of positive correlation 
was greater than negative correlation (Fig. 1A), suggest-
ing that autophagy-related genes may regulate biological 
function through synergy.

Next, we performed consensus clustering to classify 
samples from seven GEO datasets based on the expres-
sion profiles of 20 autophagy-related genes. After unsu-
pervised clustering, the samples are divided into three 

http://www.autophagy.lu/
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Fig. 1 Biological functions of each autophagy regulation pattern. A Heatmap shows the positive(red) and negative(blue) correlation between 
autophagy-related genes in ovarian cancer. B The survival curve compared the survival differences between the two autophagy regulation patterns. 
C A heatmap shows the expression of autophagy-related genes between autophagy regulation patterns. D GSVA enrichment analysis shows the 
activation status of biological pathways in different autophagy regulation patterns. Red represents the activation pathway and blue represents the 
inhibition pathway. E CIBERSORT algorithm calculates the relative abundance of TME immune cell infiltration in different autophagy regulation 
patterns
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categories, of which 306 samples in cluster1, 253 samples 
in cluster2, and 307 samples in cluster3. After prognos-
tic analysis of the three autophagy regulation patterns, it 
could be found that the prognosis of the three types of 
regulation patterns was significantly different, of which 
cluster2 has the best prognosis and cluster1 had the 
worst prognosis (Additional Fig. 2). To better analyze the 
differences between regulation patterns, we selected clus-
ter1 and cluster2 with the most significant difference in 
survival for follow-up analysis (Fig. 1B, and C).

To determine the biological significance of different 
regulatory patterns, we performed a GSVA enrichment 
analysis. Cluster1 significantly enriched in carcinogenic 
related signal pathways, such as ECM receptor interac-
tion, cell adhesion, and MAPK signaling pathways. The 
signal pathways of cluster2 enrichment include lysosome-
related pathway, p53 apoptosis pathway, coagulation, and 
complement cascade reaction signal pathway (Fig.  1D). 
Through GSVA enrichment analysis, we found that there 
may be a certain correlation between immune microen-
vironment and autophagy regulation patterns. We used 
the CIBERPORT method to component differences of 
immune cell infiltration between different patterns. The 
results showed that innate immune cells [natural killer 
(NK) cells, NK  CD56dimcells, NK CD56 bright cells, plas-
macytoid dendritic cells (DCs), immature DCs, activated 
DCs, and macrophages] were mainly enriched in cluster 
2, while adaptive immune cells [Th2 cells, T helper cells] 
were enriched in cluster 1 (Fig. 1E).

Construction of autophagy‑related risk model
To better study the function of autophagy regulation 
mode, we extracted 250 autophagy phenotype-related 
difference genes with limma R package and enriched 
DEGs with GO and KEGG. We found that DEGs mainly 
showed cell proliferation in biological processes, and they 
have also enriched in TNF signaling pathway, MAPK 
signaling pathway, and PI3K-Akt signaling pathway 
(Additional Fig. 3 and 4).

To further understand this regulatory difference, we 
performed unsupervised cluster analysis on 250 differ-
ential genes. This analysis divided patients into two cat-
egories: gene.clusterA and gene.clusterB. Gene.clusterA 
contained 248 samples and gene.clusterB contained 311 
samples. To our surprise, the sample distribution of gene.
clusterA was highly consistent with cluster1, and gene.
clusterB was highly consistent with cluster2 (Fig.  2A). 
Survival analysis showed that gene.clusterA had a worse 
prognosis than gene.clusterB which was similar to the 
prognostic trend between cluster1 and cluster2 (Addi-
tional Fig. 5).

By univariate and multivariate COX regression analysis 
of 250 DEGs, we obtained six genes that independently 

predicted survival (Additional Fig.  6). To better quan-
tify the autophagy regulation patterns of ovarian cancer 
patients, we constructed a risk model based on these six 
genes. We found that the risk score of cluster1 was sig-
nificantly higher than that of cluster2, and the risk score 
of gene.clusterA was also higher than that of gene.clus-
terB (Fig. 2B, and C). To evaluate the impact of the risk 
model on the immune microenvironment, we compared 
immune cell infiltration in different risk score groups 
(Additional Table 4). We found that Th2 cells, Tgd cells, 
eosinophils cells, and lymph vessels cells were higher 
infiltration in the high-risk score group, and aDC cells, 
NK  cd56dimcells, and NK  CD56bright cells were higher 
infiltration in the low-risk score group (Additional Fig. 7). 
To judge the clinical predictive value of the risk model 
for ovarian cancer patients, we divided the patients into 
high-risk groups and low-risk groups according to the 
median value of the risk score. The survival analysis of 
the two groups showed that the low-risk group had a bet-
ter prognosis (Fig. 2D). The ROC curve showed that the 
areas under the curve of 1-year, 3-year, and 5-year over-
all survival times were 0.68, 0.72, and 0.75 respectively 
(Fig.  2E), suggesting that the risk model had high accu-
racy and sensitivity. 366 ovarian cancer samples from 
the TCGA also verified the accuracy of the risk model 
(Fig. 2F). These results show that the risk model based on 
autophagy phenotype-related genes can accurately pre-
dict the prognosis of patients.

The risk model predicts the response to immunotherapy
At present, immunotherapy had provided important 
clues for the clinical treatment of cancer. Drugs based on 
PD-L1 and PD-1 blockers have become the research hot-
spot of tumor immunotherapy. In the previous results, 
we found that the risk model had a certain correlation 
with the immune microenvironment. Therefore, through 
the analysis of two immunotherapy cohorts, we studied 
whether the risk model could predict the response of 
ovarian cancer patients to immune checkpoint block-
ing therapy. We found that the low-risk score group had 
a longer survival time in both the anti-PD-L1 cohort 
(IMvigor210) and anti-PD-1 cohort (GSE78220) (Fig. 3A, 
and B). In the IMvigor210 cohort, patients had different 
degrees of efficacy in anti-PD-L1 blocker treatment, and 
patients with complete response had lower risk scores 
than patients with other reactions (SD, stable disease; 
PD, progressive disease; CR, complete response; PR, par-
tial response) (Fig. 3C). We also studied the risk score of 
three immune subtypes in the IMvigor210 cohort and 
found that the risk score of the "immune infected" sub-
type was the lowest, while the risk score of the "immune 
desert" subtype was the highest (Fig. 3D). In addition, the 
neoantigen burden and mutation burden in the low-risk 
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Fig. 2 Construction of autophagy-related risk model. A Heatmap shows gene expression between different autophagy phenotype regulation 
patterns. red: high expression; blue, low expression. B and C The difference of risk score between autophagy regulation patterns (B) and autophagy 
phenotypic regulation patterns (C) (t.test, P < 0.0001). D and F The survival curve shows the prognostic difference between high and low-risk groups 
in GEO database (D) and TCGA database (F), and the predictive value of the risk model for ovarian cancer patients in GEO database (E)
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score group were significantly higher than those in the 
high-risk group (Fig. 3E, and F), suggesting that patients 
in the low-risk group may be more likely to stimulate an 
immune-inflammatory response.

Prediction of drug sensitivity
Since chemotherapy is a common treatment for ovar-
ian cancer, we evaluated the response of the risk model 
to chemotherapy drugs for ovarian cancer. Based on 
the GDSC drug database, we evaluated the IC50 value 

Fig. 3 Relationship between risk model and efficacy of immunotherapy. A and B The survival curve showed the survival difference between 
the high-risk score and low-risk score groups in the immunotherapy imvigor210 cohort (A) and GSE78220 cohort (B). C In the imvigor210 
cohort, there were differences in risk scores between different clinical responses to anti-PD-L1 treatment. D Differences in risk scores for different 
immunophenotypes in the imvigor210 cohort. E and F There were differences in risk scores between different neoantigen burdens (E) and 
mutation burden (F) in the imvigor210 cohort
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of each sample of the GSE mixing matrix for the drug. 
We could find that the IC50 values of these chemo-
therapeutic drugs were different between the high-
risk score group and the low-risk score group, and the 
patients with low-risk scores may be more sensitive to 
paclitaxel, salubrinal, S.Trityl.L.cysteine, Methotrexate 
and BIBW2992 (Fig.  4E-I), while the high-risk group 
was more sensitive to docetaxel, cisplatin, Cytarabine 
and gemcitabine chemotherapy (Fig. 4A-D). Paclitaxel 
combined with platinum drugs is the first-line treat-
ment of ovarian cancer chemotherapy. The analysis of 
drug sensitivity can provide the basis for the develop-
ment of personalized treatment for tumor patients.

Discussion
Human homeostasis depends on the interaction of a 
variety of complex regulatory mechanisms. More and 
more studies have shown that autophagy plays an impor-
tant role in the occurrence and development of tumors 
by participating in biological activities such as inflam-
mation, immune response, and oxidative stress [13]. 
Although immune checkpoint inhibitors (ICB) have not 
been approved as conventional drugs for the treatment 
of ovarian cancer, immunotherapy in urothelial cancer 
and melanoma had achieved good clinical effects [12, 
17]. Therefore, we could predict the possibility of immu-
notherapy for ovarian cancer by analyzing the immune 

Fig. 4 Prediction of drug sensitivity (A–D) Sensitive drugs in high-risk score groups. E‑I Sensitive drugs in low-risk score groups
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microenvironment. Previous studies on immune micro-
environment and autophagy have often focused on a sin-
gle immune cell type or regulatory molecule [9, 10, 22]. 
The overall infiltration characteristics of TME mediated 
by integrating multiple autophagy-related genes have not 
been fully analyzed. Identifying the role of autophagy 
regulation mode in the immune microenvironment will 
help to improve our understanding of TME anti-ovarian 
cancer immune response, and guide more effective clini-
cal treatment strategies.

In this study, we first obtained 232 reported autophagy-
related genes from the Human Autophagy Database, and 
then selected 20 prognostic autophagy-related genes 
according to the mixed gene expression profile on the 
GEO database. Based on 20 prognostic autophagy-related 
genes, we developed two different autophagy regulation 
patterns. These two models had significantly different 
prognostic effects and characteristics of TME cell infil-
tration. The prognosis of cluster1 was significantly worse 
than that of cluster2, and adaptive immune cells were 
mainly enriched in cluster1, while innate immune cells 
were mainly enriched in cluster2. Through GSVA enrich-
ment of two autophagy regulation patterns, it was found 
that carcinogenic pathways were mainly enriched in clus-
ter1, including ECM receptor interaction, cell adhesion, 
and MAPK signaling pathways, while cluster2 was mainly 
enriched in apoptotic pathway and lysosomal pathway. 
This may be one of the reasons why cluster 2 had a bet-
ter prognosis than cluster1. Then, based on two different 
autophagy regulation patterns, we identified two ovarian 
cancer subtypes related to autophagy regulation patterns: 
gene.clusterA and gene.clusterB. To quantify the efficacy 
of autophagy regulation patterns in individual ovarian 
cancer patients, we constructed a risk score model based 
on the two ovarian cancer subtypes. We found that the 
high-risk score group had a worse prognosis than the 
low-risk score group. According to the histogram, we 
analyze the sample overlap of these three different clas-
sification patterns and found that the three classification 
patterns were highly consistent in the sample composi-
tion (Additional Figs. 8 and 9), and they were also similar 
in prognostic differences and types of immune cell infil-
tration. This shows that our classification model had good 
stability. We found that in the IMvigor210 cohort and 
GSE72880 cohort, the prognosis of the high-risk group 
was worse than that of the low-risk group, and showed a 
higher risk score in the immune desert phenotype, while 
the risk score of the immune-inflammatory phenotype 
was lower. Immune desert phenotype could be regarded 
as the non-inflammatory tumor, also known as a "cold 
tumor". Although there are a large number of immune 
cells, they may not be involved in regulating tumor pro-
gression [23, 24]. The immuneinflamed phenotype was 

called "hot tumor", which means that more immune cells 
were infiltrating the tumor microenvironment [25–27]. 
In the IMvigor210 cohort, we also found that among 
patients with complete response to PD-L1 blockers, the 
risk score was the lowest. Previous studies had shown 
that a high neoantigen burden and high mutation load 
can increase the lasting clinical benefits of immuno-
therapy [28]. In our model, the risk scores of the high 
mutation load group and high neoantigen burden group 
were lower, which was consistent with the results of pre-
vious studies, which indicates that the risk model we 
constructed could predict the patient’s response to ICB 
treatment. Finally, we used the GDSC database to analyze 
the therapeutic guidance role of the risk model in ovar-
ian cancer. We found that the low-risk group was more 
sensitive to paclitaxel, salubrinal, S.Trityl.L.cysteine, 
Methotrexate and BIBW2992, while the high-risk group 
was more sensitive to docetaxel, cisplatin, Cytarabine and 
gemcitabine chemotherapy. In our team’s previous stud-
ies, we found that autophagy can reverse cisplatin resist-
ance in ovarian cancer [29–31], which coincides with 
the conclusion that there was a significant difference in 
sensitivity to cisplatin between high-risk groups, which 
may provide preliminary evidence for future treatment 
of ovarian cancer targeting autophagy. By analyzing the 
immune cell infiltration of different autophagy regulation 
patterns identifying the risk scores of different tumor 
immunophenotypes, and judging the sensitivity of ovar-
ian cancer patients to conventional chemotherapy, we 
provide a new direction for formulating personalized 
anti-cancer treatment.

Conclusions
In general, we used the ovarian cancer cohort of TCGA 
and GEO database to determine a risk model based on 
autophagy-related genes, systematically and comprehen-
sively analyzed the risk models, revealed their impact on 
the prognosis of ovarian cancer patients, and provided 
some ideas for patients’ immunotherapy by analyzing 
the immune microenvironment. Our findings suggest 
that risk models based on autophagy-related genes may 
help to promote personalized medicine in the clinical 
environment.
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