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Abstract 

Background:  Diabetic nephropathy (DN) is the major cause of end-stage renal disease worldwide. The mecha-
nism of tubulointerstitial lesions in DN is not fully elucidated. This article aims to identify novel genes and clarify the 
molecular mechanisms for the progression of DN through integrated bioinformatics approaches.

Method:  We downloaded microarray datasets from Gene Expression Omnibus (GEO) database and identified the 
differentially expressed genes (DEGs). Enrichment analyses, construction of Protein–protein interaction (PPI) network, 
and visualization of the co-expressed network between mRNAs and microRNAs (miRNAs) were performed. Addition-
ally, we validated the expression of hub genes and analyzed the Receiver Operating Characteristic (ROC) curve in 
another GEO dataset. Clinical analysis and ceRNA networks were further analyzed.

Results:  Totally 463 DEGs were identified, and enrichment analyses demonstrated that extracellular matrix structural 
constituents, regulation of immune effector process, positive regulation of cytokine production, phagosome, and 
complement and coagulation cascades were the major enriched pathways in DN. Three hub genes (CD53, CSF2RB, 
and LAPTM5) were obtained, and their expression levels were validated by GEO datasets. Pearson analysis showed 
that these genes were negatively correlated with the glomerular filtration rate (GFR). After literature searching, the 
ceRNA networks among circRNAs/IncRNAs, miRNAs, and mRNAs were constructed. The predicted RNA pathway 
of NEAT1/XIST-hsa-miR-155-5p/hsa-miR-486-5p-CSF2RB provides an important perspective and insights into the 
molecular mechanism of DN.

Conclusion:  In conclusion, we identified three genes, namely CD53, CSF2RB, and LAPTM5, as hub genes of tubu-
lointerstitial lesions in DN. They may be closely related to the pathogenesis of DN and the predicted RNA regulatory 
pathway of NEAT1/XIST-hsa-miR-155-5p/hsa-miR-486-5p-CSF2RB presents a biomarker axis to the occurrence and 
development of DN.
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Introduction
Diabetic nephropathy (DN) is a destructive complica-
tion of diabetes mellitus and a major cause of end-stage 
renal disease [1]. As an overwhelming majority of the 
renal parenchyma, the tubulointerstitial compartment 
plays an irreplaceable role in the pathogenesis of DN. 

Open Access

*Correspondence:  lidong430@126.com

1 Department of Nephrology, Tianjin Medical University General Hospital, 
Tianjin 300052, China
Full list of author information is available at the end of the article

http://orcid.org/0000-0001-9686-8813
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s41065-022-00249-6&domain=pdf


Page 2 of 12Cao et al. Hereditas          (2022) 159:36 

Representative tubulointerstitial changes of DN include 
the hypertrophy of the renal tubular, thickening of the 
tubular basement membrane, and the fibrosis of the 
renal interstitial, which promote the development of 
DN [2, 3]. Some emerging biological pathways, such 
as oxidative stress, transforming growth factor-β acti-
vation, proinflammatory cytokines, and chemokines, 
are also involved in tubulointerstitial lesions of DN [4]. 
Since its complex pathogenesis, exploring potential 
genes and mechanisms could provide novel insight into 
the understanding of DN.

In the last few years, much attention has been paid 
to the integrated analysis of transcriptomic and 
microarray due to its widespread use in multiple dis-
eases, including cancers and non-cancers. The previ-
ous explorations combined with bioinformatics have 
revealed several biomarkers in DN, such as Protein S 
and COL4A3 [5, 6]. The presence of microalbuminuria 
has been considered a well-known biomarker to indi-
cate the occurrence of the advanced DN [7]. Whereas 
microalbuminuria cannot sufficiently predict the DN 
patients with non-proteinuria or with slight patho-
physiological changes, exploring extra biomarkers of 
tubulointerstitial lesions to indicate the early stage of 
DN seems indispensable. Furthermore, competitive 
endogenous RNA (ceRNA) networks that based on the 
interactions among the main non-coding RNAs (ncR-
NAs), including microRNAs (miRNAs), long non-cod-
ing RNAs (IncRNAs), and circular RNAs (circRNAs), 
are capable of providing a significant opportunity to 
advance the understanding of biomarkers and mecha-
nisms that closely related to DN.

Our present work identified the difference in the 
mRNA expression profiles between DN samples and 
controls from human tubulointerstitial tissues. The 
limma package was used to recognize differentially 
expressed genes (DEGs). Gene set enrichment analy-
sis (GSEA), Gene Ontology (GO), and Kyoto encyclo-
pedia of genes and genomes (KEGG) Pathways were 
performed to explore the mechanisms that impact the 
pathogenesis of DN. The Protein–protein Interaction 
(PPI) network was constructed to obtain hub genes. 
Validation datasets were further used to validate the 
expression and plot the ROC curve of hub genes. The 
clinical features of the hub genes were explored. Based 
on the interaction relationship between the predicted 
miRNAs, IncRNAs, and circRNAs, we constructed 
ceRNA networks to elucidate a novel mechanism for 
accelerating DN progression in transcriptional net-
works. The identified hub genes and potential ceRNA 
networks are expected to provide insights into the 
molecular mechanism of tubulointerstitial lesions in 
DN.

Materials and methods
Data sources
We screened relevant gene expression datasets from 
the Gene Expression Omnibus (GEO) genomics data 
repository (http://​www.​ncbi.​nlm.​nih.​gov/​geo) using 
diabetic nephropathy and tubulointerstitial as the key-
words [8]. The screening criteria are set as follows: the 
microarray expression profile should include human 
tubulointerstitial samples and provide complete raw 
data. Eventually, we selected the microarray dataset 
(GSE30529) that was downloaded from the Affymetrix 
GPL571 platform (Affymetrix Human Genome U133A 
2.0 Array) as the test dataset. GSE30529 was the sub-
series of GSE30122, from which we collected 10 DN 
samples (GSM757014-GSM757023) and 12 controls 
(GSM757024-GSM757035) of human tubulointerstitial 
tissues.

Quality control and identification of DEGs
We used GEOquery (version 2.54.1) and limma package 
(version 3.42.2) in R software (version 3.6.3) to read data 
and complete the analysis of DEGs, respectively. Data 
normalization and log2 conversion were included in the 
pre-processed analysis. Probe sets with no relevant gene 
symbols or gene symbols with an excess of one probe set 
were removed or averaged. To evaluate the quality of the 
selected dataset, we analyzed the processed data boxplot, 
principal component analysis (PCA), and uniform mani-
fold approximation and projection (UMAP). We consid-
ered these genes with adj. P-value < 0.05 and |logFC (fold 
change)|> 1 as DEGs. We further used the ggplot2 (ver-
sion 3.3.3) package and ComplexHeatmap (version 2.2.0) 
package of R software to draw the volcano and heatmaps 
of the acquired DEGs [9].

Enrichment analyses
To evaluate the association between gene sets and biolog-
ical signals, we performed the GSEA analysis [10]. After 
downloading GSEA_4.1.0 and c5: GO gene sets (c5.all.
v7.1.symbols. gmt), we analyzed it via the clusterProfiler 
package (version 3.14.3) in R software [11]. The thresh-
old value of |Normalized Enrichment Score (NES)|> 1, 
False Discovery Rates (FDR) < 0.05, and p-value < 0.05 
were considered statistically significant in GSEA. GO 
and KEGG enrichment analyses of identified DEGs were 
annotated with clusterProfiler package (version 3.14.3) 
and visualized by ggplot2 (version 3.3.3). GO analysis can 
provide scientists with the better understanding of the 
functional annotations of the gene products [12]. KEGG 
Pathway is a tool to help biologists understand the sys-
temic functions of the cell and even the organism [13]. Q 
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value < 0.05 and gene count ≥ 2 were considered to indi-
cate statistically significant results.

PPI network construction and significant module analysis
STRING (version 11.0), an online database that can 
explore the underlying relationship among proteins, 
was used to construct the complex PPI network with a 
combined score > 0.7 [14]. Cytoscape (version 3.8.2) was 
used to visualize the PPI network [15]. Minimal Com-
mon Oncology Data Elements (MCODE) (version 2.0.0), 
a plugin of Cytoscape, was used to construct significant 
modules with the filter criteria: degree cutoff = 2, max 
depth = 100, K-core = 2, and node score cutoff = 0.2.

Identification of hub genes and prediction of target 
miRNAs
We used cytoHubba (version 0.1), a plugin of Cytoscape 
software, to obtain hub genes by acquiring the interacted 
genes of the top 10 genes identified by the following 
algorithm modules, namely Maximal Clique Centrality 
(MCC), Density of Maximum Neighborhood Component 
(DMNC), Maximum Neighborhood Component (MNC), 
and Degree [16]. Three online tools (miRmap, microT, 
miRanda) were applied to predict target miRNAs of hub 
genes, and we chose the miRNAs that appeared more 
than once in searching tools as target miRNAs. Given the 
regulatory relationship between the hub genes (mRNA) 
and their target miRNAs, we used Cytoscape software to 
perform the co-expressed network of mRNAs-miRNAs.

Validation and ROC curve analysis of hub genes by another 
GEO dataset
The GEO dataset (GSE104954) was recognized 
as the validation dataset with selected 7 DN sam-
ples (GSM2811029-GSM2811035) and 18 controls 
(GSM2811043-GSM2811060) from human tubuloint-
erstitial tissues. We used the validation dataset to verify 
the mRNA expression and plot the ROC curve of the hub 
genes by the ggplot2 package (version 3.3.3). The statisti-
cal method of t-test was used to compare the differences 
between the DN samples and controls, and we consid-
ered P-value < 0.05 as significant.

Construction of ceRNA networks
StarBase (http://​starb​ase.​sysu.​edu.​cn/​index.​php) is a 
novel database developed to accelerate the comprehen-
sive understanding of miRNA-target intersection maps 
based on the CLIP-Seq and Degradome-Seq data [17]. 
We used StarBase to explore the interactive relationships 
between the IncRNAs, circRNAs, and specific miRNAs 
with the screening criteria of mammalian, human, h19 
genome, strict stringency (> = 5) of CLIP-Data, with or 
without degradome data, and with or without data of 

pan-cancer. Finally, the intersected IncRNAs and circR-
NAs were recognized as the final target results of certain 
miRNAs. The ceRNA networks among mRNAs, miR-
NAs, IncRNAs, and circRNAs were constructed and vis-
ualized by the Cytoscape software.

Clinical and statistical analysis
The data from Nephroseq v5 online platform (http://​v5.​
nephr​oseq.​org) was extracted to explore clinical charac-
teristics of gene expression in human tubulointerstitial 
tissues [18]. We performed a correlation analysis of glo-
merular filtration rate (GFR) [19], proteinuria [20], and 
age in tubulointerstitial samples of DN patients and com-
pared gene expression between the subnephrotic pro-
teinuria group and nephrotic proteinuria group [20]. A 
statistical method of Student’s t-test was used to analyze 
the data between the two groups. The cutoff criterion 
was set as p < 0.05. Insignificant results are not displayed.

Results
Quality control and identification of DEGs
Figure  1 shows the overall flowchart of this present 
research. The processed data boxplot displayed that the 
medians of each sample were almost on the same line 
(Fig.  2A). The PCA and UMAP plots suggested a good 
distinction between DN and control samples (Fig.  2B, 
C). After downloading the tubulointerstitial data from 
GSE30529, we recognized 463 DEGs that consist of 340 
up-regulated DEGs and 123 down-regulated DEGs. Fig-
ure  2D and E showed the volcano map and heatmap of 
the DEGs.

Analysis of the functional characteristics
To evaluate GO analysis of all genes, we performed GSEA 
analysis. We found that the most enriched gene sets were 
associated with extracellular matrix structural constitu-
ent, complement activation, and positive regulation of T 
cell proliferation in DN samples (Fig. 3). We subsequently 
performed the GO and KEGG pathway analyses of DEGs. 
Compared to the controls, DN patients are significantly 
enriched in the extracellular matrix and inflammatory 
response, including collagen-containing extracellular 
matrix, extracellular structure organization, and regula-
tion of immune effector process (Fig. 4A). Based on the 
KEGG pathways, the top 10 enriched pathways involved 
Phagosome, Staphylococcus aureus infection, Pertussis, 
Leishmaniasis, Tuberculosis, Complement and coagula-
tion cascades, Cell adhesion molecules, Viral myocardi-
tis, Systemic lupus erythematosus, and Toxoplasmosis 
(Fig. 4B).

http://starbase.sysu.edu.cn/index.php
http://v5.nephroseq.org
http://v5.nephroseq.org
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PPI network construction and module analysis
The complex PPI network was constructed with 
277 nodes and 803 edges in Fig.  5A. Through plugin 
MCODE of Cytoscape, we recognized 3 significant 
modules with an MCODE score > 5. Module one had 
the highest score with 11 (11 nodes and 55 edges), 
module two had the second-highest score with 5.625 
(17 nodes and 45 edges), followed by module three 
had the third-highest score with 5.60 (6 nodes and 14 
edges) (Fig. 5B-E).

Identification of hub genes and prediction of target 
miRNAs
Four algorithms were used to identify the hub genes via 
the Venn diagram. As a result, 3 intersected genes were 
obtained (Fig.  6A). Table  1 lists the hub genes together 
with their full name and descriptions. We then explored 
24 target miRNAs of 3 hub genes based on the regulatory 
relationship between mRNAs and miRNAs. There are 25 
mRNA-miRNA pairs in the co-expressed mRNA-miRNA 
network (Fig. 6B).

Validation and ROC curve of hub genes
To assess the reliability of these hub gene expressions, we 
used the validation dataset to explore the mRNA levels of 
the obtained hub genes. The results displayed that 3 hub 

genes showed up-regulated mRNA levels in DN (Fig. 7A). 
To further evaluate the sensitivity and specificity of the 
hub genes, we analyzed the ROC curve with the valida-
tion dataset. Among the results, CSF2RB had the highest 
areas under the curve (AUC) score ( AUC value: 0.897), 
CD53 had the second-highest AUC score ( AUC value: 
0.846), followed by LAPTM5 had the third-highest AUC 
score ( AUC value: 0.843) (Fig. 7B).

Clinical analysis
Based on the Nephroseq v5 platform, we investigated 
the possible impact of the hub genes in tubulointersti-
tial samples in DN. Correlation analyses showed that 
the mRNA levels of CSF2RB, CD53, and LAPTM5 in 
human tubulointerstitial samples were negatively cor-
related with GFR (Fig.  8A-D), indicating that these hub 
genes may accelerate the tubulointerstitial lesions of DN. 
Then, the mRNA levels of CD53 and LAPTM5 in human 
tubulointerstitial samples had positive correlations with 
proteinuria (Fig. 8E, F), further suggesting that CD53 and 
LAPTM5 may be involved in the progression of tubu-
lointerstitial injuries of DN. Additionally, we found that, 
in contrast with the subnephrotic proteinuria group, the 
mRNA expression level of LAPTM5 in renal tubuloint-
erstitial samples was higher in the nephrotic proteinu-
ria group (Fig.  8G). Furthermore, the mRNA levels of 

Fig. 1  The flowchart of this study
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CSF2RB, CD53, and LAPTM5 were conversely related to 
their age (Fig. 8H, J).

Construction of ceRNA networks
It is well known that miRNAs can inhibit mRNA transla-
tion or lead to mRNA degradation by binding to target 
mRNAs, thus achieving the regulation of gene expres-
sion. However, the ceRNA hypothesis interpreted 
that IncRNAs, circRNAs, and pseudogenes that act as 
competing endogenous RNAs or natural microRNA 
sponges can increase gene expression by binding micro-
RNA response elements (MREs) [21]. Based on the Star-
base platform, we predicted corresponding IncRNAs 
and circRNAs of target miRNAs. Finally, we selected the 
IncRNAs, circRNAs that appeared in most of the fore-
casted results of target miRNAs to be our final IncRNAs, 
circRNAs. Of the predicted results in the Starbase tool, 

we regarded the circRNAs that qualified with the highest 
score or /and the most samples in the circBase database 
to be the eventual target circRNAs since one transcript 
corresponds to multiple shear sites of circRNA.

Just as the forecasted results of circRNAs and IncRNAs 
(Fig. 9A, B, C), we acquired 22 circRNAs and 1 IncRNA 
of 3 miRNAs of CD53, which were paired into 66 cir-
cRNA-miRNA interactions, 3 IncRNA-miRNA interac-
tions, and 3 miRNA-mRNA interactions; 9 circRNAs and 
2 IncRNAs of 18 miRNAs of CSF2RB, which were paired 
into 135 circRNA-miRNA interactions, 18 IncRNA-
miRNA interactions, and 29 miRNA-mRNA interactions; 
and 5 circRNAs and 1 IncRNA of 4 miRNAs of LAPTM5, 
which were paired into 20 circRNA-miRNA interactions, 
4 IncRNA-miRNA interactions, and 4 miRNA-mRNA 
interactions. After an extensive literature search, we 
chose two reported down-regulated miRNAs and two 

Fig. 2  Quality control and Identification of DEGs. A The processed data boxplot. B The PCA plot. C The UMAP plot. D The valcano plot of DEGs. E 
The heatmap of the top 20 significant up-regulated and down-regulated DEGs. DN: diabetic nephropathy; DEGs: differentially expressed genes; 
PCA: principal component analysis; UMAP: uniform manifold approximation and projection
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reported up-regulated IncRNAs in DN, for further analy-
ses. We speculated that the RNA regulatory pathway of 
NEAT1/XIST-hsa-miR-155-5p/hsa-miR-486-5p-CSF2RB 
might play an essential role in DN (Fig. 9D).

Discussion
DN is the major cause of renal failure across the world. 
The pathogenetic mechanisms of the tubulointerstit-
ium, including the activation of intracellular signals 
[1], adverse changes secondary to the glomerulus, and 
hypoxia-induced lesions [22, 23], have emerged as a 
critical part of the occurrence and progression of DN. 
Although a great deal of effort has been undertaken so 
far, we still lack a thorough understanding of the patho-
genesis of DN. Fortunately, this emerging combina-
tion of high-throughput microarray technology and 

bioinformatics methods allows us to identify important 
genes and biological pathways associated with tubuloint-
erstitial lesions in DN and gain insights into the patho-
genesis of DN.

Totally 12,548 genes are included in the GSEA 
enrichment analysis, and 463 DEGs are included for 
GO and KEGG analyses. GSEA and GO enrichment 
analyses both suggested that extracellular matrix 
(ECM) structural constituent, ECM organization, 
collagen-containing ECM, and extracellular structure 
organization were highly enriched in DN groups. The 
hallmark of the pathogenesis of DN is an increased 
ECM accumulation, and the ECM levels are usually 
regulated by a balance between the deposition and 
degradation of the ECM components [24]. The depo-
sition of ECM proteins, including collagen I, decorin, 
and biglycan, are all involved in tubulointerstitial 

Fig. 3  GSEA plot showed the most enriched gene sets in DN. A The most signifcant enriched gene set was extracellar matrix structural constituent 
(ES = 0.617, NES = 2.414, p < 0.05). B The second signifcant gene set was complement activation (ES = 0.666, NES = 2.386, p < 0.05). C The third 
signifcant enriched gene set was positive regulation of T cell production (ES = 0.644, NES = 2.364, p < 0.05). D The fourth signifcant enriched 
gene set was positive rgulation of leukocyte proliferation (ES = 0.612, NES = 2.364, p < 0.05). E The fifth signifcant enriched gene set was antigen 
processing and presentation (ES = 0.570, NES = 2.325, p < 0.05). F The sixth signifcant enriched gene set was collagen trimer (ES = 0.662, NES = 2.261, 
p < 0.05). The defined criteria for significant gene sets were |Normalized Enrichment Score (NES)|> 1, False Discovery Rates (FDR) < 0.05 and 
p-value < 0.05. DN: diabetic nephropathy; ES: enrichment score; NES: normalized enrichment score



Page 7 of 12Cao et al. Hereditas          (2022) 159:36 	

fibrosis of DN [25, 26]. As significant endopeptidases 
for degrading ECM protein components, matrix met-
alloproteinases (MMPs) can accelerate diverse physi-
ologic and pathological damages in DN [27]. In human 
DN, MMPs dysregulation interferes with ECM degra-
dation and hydrolysis and is involved in an established 
renal injury [28].

Additionally, GO and KEGG pathway analyses were 
also enriched in regulation of immune effector pro-
cess, positive regulation of cytokine production, phago-
some, complement and coagulation cascades, and cell 
adhesion molecules. The inflammatory response is a 
mechanism induced by activated stimuli to provide 
protection, while non-resolving inflammation triggers 

Fig. 4  Enrichment analysis of DEGs. A The bubble plot showing the top 10 enriched biological processes of DEGs. B The bubble plot showing the 
top 10 enriched pathways of KEGG in DN samples. DN: diabetic nephropathy

Fig. 5  PPI network and three significant modules. A The PPI network includes 277 nodes and 803 edges. B-D three modules are extracted with 
MCODE score > 5. Red nodes indicate up-regulated DEGs and green nodes indicate down-regulated DEGs. PPI: protein–protein interaction
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the collateral damage of tissues and organisms [29]. 
Under high glucose conditions, increasing evidence 
points out the critical role of inflammation response 
in the development and progression of DN [30]. The 
activation of the complement system, deposition of 
immunoglobulin or immunoglobulin complexes, and 
activation of macrophages are all involved in the patho-
genesis of DN [31–33].

After constructing the PPI network, we acquired 
three hub genes ( CSF2RB, CD53, and LAPTM5). Fur-
ther validation suggested that they showed up-regu-
lated expressions and had high AUC values. Combined 
with their negative correlations with GFR, we specu-
lated that CSF2RB, CD53, and LAPTM5 might be the 
key genes in human tubulointerstitial lesions of DN. 
The subsequent mRNA-miRNA network and ceRNA 

networks were accomplished to offer the opportunity to 
understand the mechanisms of DN from the transcrip-
tomic level.

CSF2RB(colony-stimulating factor 2 receptor β subu-
nit) is the common subunit of receptors for interleukin 
3 (IL3), GM-CSF, and IL5 and is responsible for the ini-
tiation of signal transduction triggered by ligand binding 
[34]. Considerable evidence has revealed that IL3, GM-
CSF, and IL5 regulate multiple inflammatory responses 
that contribute to the pathology in chronic inflamma-
tion [35, 36]. Since inflammatory responses are the key 
contributors to the development of DN [37], we specu-
lated that CSR2RB has a critical role in the molecu-
lar mechanisms of DN. Our work found that CSF2RB 
expressed an increased mRNA level in human tubuloint-
erstitial samples of DN and had a high diagnostic value 

Fig. 6  Identification of hub genes and the co-expressed network of mRNAs-miRNAs. A The Venn diagram of three hub genes screened by four 
algorithms. B The mRNA-miRNA network was visualized by Cytoscape. CSF2RB had 18 target miRNAs, CD53 had 3 target miRNAs, and LAPTM5 had 
4 target miRNAs. Red circles represented mRNAs and green circles represented miRNAs

Table 1  The details of the intersected hub genes

Gene symbol Full name Description

CD53 CD53 Molecule CD53 is a member of the transmembrane 4 superfamilies. It contributes to the transduction of 
CD2-generated signals in T cells and natural killer cells and has been suggested to play a role in 
growth regulation

LAPTM5 Lysosomal Protein Transmembrane 5 LAPTM5 is a transmembrane receptor that is associated with lysosomes

CSF2RB Colony Stimulating Factor 2 Receptor 
Subunit Beta

CSF2RB is a high-affinity receptor for interleukin-3, interleukin-5, and granulocyte–macrophage 
colony-stimulating factor
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(AUC = 0.897). Furthermore, the level of CSF2RB in 
human renal tubulointerstitial samples was conversely 
correlated with GFR, and we thus regarded CSR2RB as 
a key gene in the progression of tubulointerstitial lesions 
in DN.

CD53, a component of the tetraspanin family mem-
ber expressed in the immune compartment, has been 
reported to regulate integrin-related function by adjust-
ing integrin signaling pathways and changing the gen-
eral distribution of integrins located on the immune cell 
surface [38, 39]. As known that relevant biological path-
ways about integrins have been recognized as an essential 
factor in the pathogenesis of DN [19], we then supposed 
that CD53 might play potential roles in DN. In our study, 
we investigated that CD53 showed an up-regulated level 
in DN samples. This level had a negative correlation with 
GFR and a positive correlation with proteinuria in human 
tubulointerstitial samples of DN, further illustrating the 
impact of CD53 involved in tubulointerstitial lesions of 
DN.

LAPTM5 (lysosomal-associated protein transmem-
brane 5) can exert positive proinflammatory effects in 
macrophages through activating NF-κB and MAPK sign-
aling pathways, promoting the production of proinflam-
matory cytokines [40]. The accumulation of macrophages 
in diabetic kidneys has been proven to associate with 
DN progression as this accumulation is closely related 
to interstitial myofibroblast accumulation and intersti-
tial fibrosis scores [41–44]. In our study, we found that 
LAPTM5 was augmented in DN, and this level was 
negatively correlated with GFR and actively correlated 
with proteinuria in human tubulointerstitial samples 
of DN. Combined with the results mentioned earlier 
and its diagnostic value (AUC value:0.843), we regarded 
LAPTM5 as a hub gene in DN.

Based on the predicted target miRNAs, IncRNAs, 
and circRNAs, we subsequently visualized the ceRNA 
networks by Cytoscape software. After a literature 
search for target miRNAs and IncRNAs, the down-
regulated miRNAs and up-regulated IncRNAs were 

Fig. 7  Verification and ROC curve analysis of the hub genes by another human tubulointerstitial dataset. A CD53, LAPTM5, and CSF2RB are 
up-regulated in DN samples compared with controls. ***: p < 0.001, **: p < 0.01, *: p < 0.05. B CSF2RB has the highest score (AUC value: 0.897), CD53 
has the second highest score (AUC value: 0.846) and LAPTM5 has the third highest score (AUC value: 0.843). ROC: Receiver Operating Characteristic; 
AUC: Area under the curve; DN: diabetic nephropathy
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Fig. 8  Explorations between clinical features and hub genes (CSF2RB, CD53 and LAPTM5) in human tubulointerstitial samples. A The mRNA 
expression of CSF2RB was negatively correlated with GFR (MDRD). B The mRNA expression of CSF2RB was negatively correlated with GFR (CG). C 
The mRNA expression of CD53 was negatively correlated with GFR (MDRD). D The mRNA expression of LAPTM5 was negatively correlated with GFR 
(MDRD). E The mRNA expression of CD53 was positively correlated with proteinuria. F The mRNA expression of LAPTM5 was positively correlated 
with proteinuria. G The mRNA expression of LAPTM5 in nephrotic proteinuria group was higher than that of subnephrotic proteinuria group. H The 
mRNA expression of CSR2RB was negatively correlated with age. I The mRNA expression of CD53 was negatively correlated with age. J The mRNA 
expression of LAPTM5 was negatively correlated with age. GFR: glomerular filtration rate; MDRD: modification of diet in renal disease; CG: Cockcroft 
Gault; *: p < 0.05; P < 0.05 was considered significant

Fig. 9  Three ceRNA networks of CD53, CSF2RB and LAPTM5 and the potential RNA regulatory pathways. A The ceRNA network of CD53. B The 
ceRNA network of CSF2RB. C The ceRNA network of LAPTM5. D NEAT1/XIST-miR-155-5p/miR-486-5p-CSR2RB. Red octagons note the hub genes, 
purple rectangles note miRNAs, pink diamonds note IncRNAs, and syan circles note circRNAs
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chosen for further analysis. Among them, hsa-miR-
155-5p and hsa-miR-486-5p were down-regulated in 
DN samples [45, 46]. Additionally, IncRNAs of Nuclear 
Enriched Abundant Transcript-1 (NEAT1) and X-inac-
tive specific transcript (XIST) have emphasized their 
high expression level in DN. Under hyperglycemia, 
the expression of NEAT1 was up-regulated in DN and 
led to renal tubular epithelial-mesenchymal transi-
tion (EMT) and renal fibrosis [47]. Another IncRNA of 
XIST also showed an up-regulated level in human DN, 
and this increased expression of XIST is closely related 
to renal fibrosis [48]. Based on the proposed ceRNA 
hypothesis, these observations may support the pos-
sibility that the regulatory pathway of NEAT1/XIST-
hsa-miR-155-5p/hsa-miR-486-5p-CSF2RB might be 
involved in the molecular mechanisms of DN compli-
cated with tubulointerstitial lesions.

Nevertheless, our article still has some limitations. 
First, this is a retrospective study that may command 
Vivo experiments with a larger sample size to prove our 
observations; Second, the definite function of the hub 
genes and the molecular mechanisms under DN needs 
to be further verified in future investigations before 
being applied in clinical practice, which will be the 
main direction of our future work.

Conclusion
Our research identified three genes, namely CSF2RB, 
CD53, and LAPTM5, as the tubulointerstitial genes of 
DN and helped us further elucidate the molecular mech-
anisms of DN at the transcriptome level. The hypothetical 
pathway of NEAT1/XIST-hsa-miR-155-5p/hsa-miR-486-
5p-CSF2RB may play a vital role in the progression of 
tubulointerstitial lesions implicated in early DN.
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