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ARG1 as a promising biomarker for sepsis 
diagnosis and prognosis: evidence from WGCNA 
and PPI network
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Abstract 

Background:  Sepsis is a life-threatening multi-organ dysfunction caused by the dysregulated host response to infec‑
tion. Sepsis remains a major global concern with high mortality and morbidity, while management of sepsis patients 
relies heavily on early recognition and rapid stratification. This study aims to identify the crucial genes and biomarkers 
for sepsis which could guide clinicians to make rapid diagnosis and prognostication.

Methods:  Preliminary analysis of multiple global datasets, including 170 samples from patients with sepsis and 110 
healthy control samples, revealed common differentially expressed genes (DEGs) in peripheral blood of patients with 
sepsis. After Gene Oncology (GO) and pathway analysis, the Weighted Gene Correlation Network Analysis (WGCNA) 
was used to screen for genes most related with clinical diagnosis. Also, the Protein-Protein Interaction Network (PPI 
Network) was constructed based on the DEGs and the hub genes were found. The results of WGCNA and PPI network 
were compared and one shared gene was discovered. Then more datasets of 728 experimental samples and 355 
control samples were used to prove the diagnostic and prognostic value of this gene. Last, we used real-time PCR to 
confirm the bioinformatic results.

Results:  Four hundred forty-four common differentially expressed genes in the blood of sepsis patients from differ‑
ent ethnicities were identified. Fifteen genes most related with clinical diagnosis were found by WGCNA, and 24 hub 
genes with most node degrees were identified by PPI network. ARG1 turned out to be the unique overlapped gene. 
Further analysis using more datasets showed that ARG1 was not only sharply up-regulated in sepsis than in healthy 
controls, but also significantly high-expressed in septic shock than in non-septic shock, significantly high-expressed 
in severe or lethal sepsis than in uncomplicated sepsis, and significantly high-expressed in non-responders than in 
responders upon early treatment. These all demonstrate the performance of ARG1 as a key biomarker. Last, the up-
regulation of ARG1 in the blood was confirmed experimentally.

Conclusions:  We identified crucial genes that may play significant roles in sepsis by WGCNA and PPI network. ARG1 
was the only overlapped gene in both results and could be used to make an accurate diagnosis, discriminate the 
severity and predict the treatment response of sepsis.

Keywords:  Sepsis, Bioinformatical analysis, Differentially expressed genes, WGCNA, ARG1

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Introduction
Sepsis is defined as a severe systemic organ dysfunction 
due to a dysregulated host response to infection [1]. More 
than 30 million people are effected annually worldwide 
[2]. According to a meta-analysis which reviewed 170 
studies around the world, the 90-day mortality of sepsis 
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patients was 32.24% (95% CI 27.0–37.5%) [3]. However, 
up to now, we still do not fully understand the pathogen-
esis of sepsis, and are lack of specific drugs. Treatment 
for sepsis depends mainly on supportive measures, and 
patients at the early stage showed the best response [4]. 
Therefore, it is important to recognize sepsis early, so 
that supportive measures may be implemented as soon as 
possible.

Different biomarkers have been used for diagnosis of 
sepsis and monitoring of treatment, such as proclcitonin 
(PCT), C-reactive protein (CRP), cytokines, and human 
leukocyte antigen DR (HLA-DR) [5–12]. Although these 
biomarkers are widely employed in clinical practice for 
monitoring the infectious process or inflammatory disor-
ders, none of them has sufficient specificity to distinguish 
sepsis from other inflammatory disorders. So there still 
demands a novel biomarker to provide valuable informa-
tion for specific diagnosis of sepsis.

In recent decades, genome-wide analyses, such as 
high-throughput sequencing technology and gene 
chips, have been routinely used to study gene expres-
sion patterns [13]. The analysis of these data has fos-
tered the development of bioinformatics and derived 
methods such as Weighted Gene Co-Expression Net-
work Analysis (WGCNA) and Receiver Operating 
Characteristic (ROC) analysis, which can provide valu-
able information for biomarker discovery of diseases 
[14–16]. In this study, we used the gene expression 
datasets from different populations in different coun-
tries to screen out the common differentially expressed 
genes (DEGs) in peripheral blood cells of patients with 
or without sepsis. After functional enrichment analy-
ses, WGCNA was conducted to identify genes highly 
associated with clinical traits. Parallelly, the PPI net-
work was constructed to identifiy genes which may 
be involved in the progression of sepsis. Then, the 
two groups of screened-out genes were compared and 
the promising biomarker gene of sepsis was revealed. 
Moreover, a series of additional datasets were then 
used to prove the diagnosis and prognosis role of this 
gene. Last, the bioinformatic results were confirmed 
experimentally by real-time PCR. The overall design of 
this study was shown as a flow chart in Fig. 1.

Materials and methods
Data collection
Datasets of gene expression profiles GSE8121, GSE13015, 
GSE26378, GSE26440, GSE28750, GSE57065, GSE60424, 
GSE63042, GSE65682, GSE69528, GSE95233, GSE110487, 
GSE131411, GSE131761, GSE134347, GSE145227 and 
GSE154918 were downloaded from the NCBI-GEO 

Datasets Database. Details of the datasets were shown in 
Supplementary Table 1.

DEGs identification, Gene Ontology (GO) and pathway 
enrichment analysis
Data pre-processing and gene expression profile com-
parison between sepsis patients and controls were 
implemented by limma R package. Statistically signifi-
cant DEGs were defined with adjusted p value < 0.05 and 
|logFC| > 1 as the cut-off criterion. Venny v2.1 was used 
to seek for the common DEGs from the four sample 
groups.

Database for Annotation, Visualization and Integrated 
Discovery (DAVID) was used for Gene Ontology (GO) 
analysis of the DEGs [17]. KEGG Orthology Based Anno-
tation System (KOBAS) was used for pathway enrich-
ment analysis [18]. P < 0.05 was considered statistically 
significant for GO and pathway enrichment analysis.

Construction of weighted gene co‑expression network 
and detection of modules
Weighted Gene Co-Expression Networks Analy-
sis (WGCNA) is an R package which can construct 
a gene co-expression network from a large number 
of genes and identify co-expression modules [19]. 
The expression matrixes of DEGs identified above 
were meta-analyzed by WGCNA algorithm. First, the 
gene expression profiles of samples were clustered to 
remove the outliers. Then the soft threshold for net-
work construction was selected, which maked the 
adjacency matrix to be the continuous value between 
0 and 1, so that the constructed network conformed to 
the power-law distribution and was closer to the real 
biological network state [20]. Finally, the scale-free 
network was constructed using the blockwise modules 
function, followed by the module partition analysis to 
identify gene co-expression modules based on topo-
logical overlap, which could group genes with similar 
patterns of expression.

Identifying clinically related modules and genes
All modules were summarized by module eigengenes 
(MEs), the foremost principle component of each 
module that was calculated as a synthetic gene rep-
resenting the expression profile of all genes within a 
given module [21]. And the correlation between MEs 
and clinical traits (diagnosed sepsis or healthy) was 
computed. Then the gene-trait significance value 
(GS), which represented the relative level between 
genes and traits, were calculated by the value of 
Pearson’s correlation in order to identify genes most 
associated with sepsis [22].
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Construction of protein‑protein interaction (PPI) network 
and identification of hub genes and blocks
Search Tool for the Retrieval of Interacting Genes/Pro-
teins (STRING 11.0) is a database for protein-protein 
interactions [23]. In this study, we used STRING to map 
the identified common DEGs into the human PPI net-
work, which was then visualized by Cytoscape. Num-
ber of interactions between each gene in the network 
were calculated using the Network Analyzer plug-in 
of Cytoscape [24], and those with more than 35 inter-
actions were determined as hub genes. Furthermore, 
the Molecular Complex Detection (MCODE) plug-in 
was utilized to select the significant blocks from the 
PPI network, with cut-off criteria of degree ≥2, node 
score ≥ 0.2, K-core ≥2, and max depth = 100.

Receiver Operating Characteristic (ROC) curve analysis
ROC curve analyses were performed with the use of R 
package pROC, which is open-sourced and often uti-
lized to evaluate biomarker performances. The ROC 
curves were plotted based on specificity and sensitivity, 
and the AUC value was applied to predict diagnostic 
values of the selected gene.

Animals
Female C57BL/6 mice (6–8 weeks old) were purchased 
from Shanghai SLAC Laboratory Animal Company 
(Shanghai, China). The mice were reared at 18 °C–22 °C 
and the humidity was about 55%. Mice were given light 
and dark environments according to their circadian 
rhythms. In addition, they were given free food and water.

Fig. 1  The work flow chart of this study
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Cecal Ligation and Puncture (CLP) ‑induced sepsis
Poly-microbial sepsis was induced by Cecum Ligation and 
Puncture (CLP) surgery as previously described [25]. Briefly, 
preoperative fasting for 12 hours, mice were intraperito-
neally injected for anaesthetization. Hair in the lower quad-
rant of the abdomen was removed with a depilation cream 
and the area was disinfected with 75% alcohol. Then a mid-
line incision was made to obtain access to the peritoneal 
cavity, and the cecum was exposed, ligated, and punctured 
with a 22-gauge needle. Then, the ligated cecum was com-
pressed slightly to squeeze out some cecal content. Next, the 
ligated cecum was slightly squeezed to squeeze out a small 
amount of cecal contents. The cecum was put back to its 
normal location, and incisions were closed. Sham-operated 
(control) animals underwent anaesthetization, incision, 
exposure and suture, but without cecal ligation and punc-
ture. Postoperative incision was disinfected with iodophor. 
Mice were given normal saline at 37 °C (5 mL per 100 g body 
weight) subcutaneously for resuscitation. Besides, appropri-
ate measures were taken to alleviate the postoperative pain 
of mice. The sample size of each group was 7.

Quantitative real‑time PCR
Peripheral blood of each mice was collected after 24 hours 
of CLP or Sham operation, and was treated with Red Blood 
Cell Lysis Buffer (Biosharp, Anhui, China). Total RNA was 
extracted from blood cells by RNA Fast 200 kit (Fastagen, 
Shanghai, China). Then reverse transcription was per-
formed with the PrimeScript RT reagent Kit with gDNAEr-
aser (Takara, Tokyo, Japan). Quantitative real-time PCR was 
conducted with the SYBR Green PCR kit (Yeasen, Shanghai, 
China) and StepOnePlus Real-Time PCR System (Thermo 
Scientific, Massachusetts, United States). Glyceraldehyde-
3-phosphate dehydrogenase (GAPDH) was used as an inter-
nal control. The primer sequences of ARG1 and GAPDH 
were as following: ARG1: forward TCA​CCT​GAG​CTT​TGA​
TGT​CGA; reverse TGA​AAG​GAG​CCC​TGT​CTT​GTA. 
GAPDH: forward TCA​CCA​TCT​TCC​AGG​AGC​GAGAC; 
reverse AGA​CAC​CAGTA GAC​TCC​ACG​ACA​TAC. The 
results were analyzed by Mann-Whitney U test.

Results
DEGs identification, Gene Ontology (GO) and pathway 
enrichment analysis
The GEO database was utilized to obtain gene expres-
sion profile datasets in peripheral blood of sep-
tic patients. Four datasets (GSE28750, GSE57065, 
GSE65682 and GSE69528) representing different 
populations from Australia, France, Malta and United 
States were first obtained from the GEO database. The 
number of sepsis samples in GSE28750, GSE57065, 
GSE65682 and GSE69528 was 10, 26, 51 and 83 

respectively, and the number of control samples was 
20, 25, 42 and 28 respectively.

The limma R package was used to screened out the 
DEGs. As a result, 1662, 1340, 2603 and 1359 DEGs 
were identified from each dataset. After integrated 
bioinformatical analysis, a total of 444 common DEGs 
were identified (Fig.  2A, Supplementary Table  2), 
including 246 up-regulated and 198 down-regulated 
genes (Fig. 2B).

To better understand biological meanings of the com-
mon DEGs, GO analysis was conducted with DAVID. 
The immune response, T cell receptor complex and MHC 
class II protein receptor activity were the most significant 
terms for the category of biological process, cellular com-
ponent and molecular function respectively. (Fig. 2C-E). 
GO analysis of up-regulated and down-regulated genes 
was also performed separately (Supplementary Table 3). 
Moreover, the GOCircle plots showed the top 10 most 
significant GO terms (Fig.  2F), and genes involved in 
the the top 5 terms were exhibited using a chord plot 
(Fig. 2G).

Pathway enrichment analysis for the common DEGs 
was conducted using “KEGG PATHWAY”, “Reactome”, 
“Biocyc” and “Panther” databases with KOBAS 3.0 
tool. Results showed that they were most significantly 
enriched in neutrophil deregulation and immune sys-
tem (Fig. 2H). Besides, pathway analysis of up-regulated 
and down-regulated genes was also performed separately 
(Supplementary Table 4).

Weighted Gene Co‑expression Network Analysis (WGCNA) 
and module detection
The gene expression matrixes of GSE28750, GSE57065, 
GSE65682, and GSE69528 were respectively clustered 
using Pearson’s correlation coefficient according to the 
expression profiles of the 444 common DEGs in these 
datasets. Clustering trees for each dataset were estab-
lished and no outliers were found (Fig. 3A-D). Next, the 
gene modules, which represented groups of genes with 
similar patterns of expression, were calculated. Four gene 
modules were finally identified by the hierarchical clus-
tering dendrogram. And the gray module represented 
genes that cannot be clustered into any other modules 
(Fig. 3E). Among the modules, the turquoise one was the 
largest, which contained many genes related to hemopoi-
etic stem cell differentiation, such as CD4, ITGAM and 
IL1R1. And the blue module contained many genes such 
as TRAT1, ZAP70, CD8A, and CD3E, which were related 
to T cell activation, differentiation, receptor binding and 
costimulation. Therefore, this module was likely T-cell 
specific. Heatmap was constructed to visualize the gene 
co-expression network (Fig. 3F).
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Screening for clinically related modules and genes
Module eigengene is the first principal component of a 
given module, which can be considered a representative of 
the gene expression profiles in a module. The correlation 
between each module eigengene and clinical phenotypes 
was calculated [26]. The results showed that the turquoise 
module had the strongest association with sepsis (Fig. 3G). 
So, for each gene in this module, gene significance (GS) 
was calculated to evaluate the correlation between gene 

expression level and sepsis. Fifteen genes were identified 
according to GS value (Supplementary Table 5). And many 
of these genes (such as CD177 [27, 28], S100A12 [29, 30], 
and CLEC4D [31]) played a critical role in sepsis pathology.

Identification of hub genes and blocks using 
protein‑protein interaction (PPI) network
The activity of protein-protein interactions is considered 
to be the prime target of cellular biology study and works 

Fig. 2  Consistent DEGs screening, GO enrichment and pathway enrichment analysis. (A and B) Identification of consistently changed DEGs 
from the four datasets (GSE28750, GSE57065, GSE65682 and GSE69528). The 444 common DEGs can be classified into 246 up-regulated and 198 
down-regulated genes . Each color area repersented the corresponding dataset. (C, D and E) The results of GO analysis for the common DEGs were 
shown in three groups: cellular component (C), molecular function (D), and biological process (E). F The top 10 significant GO terms were shown in 
a GOCircle plot. The height of bars in the inner ring indicated the -log10 (P values) of GO terms, with higher bars representing higher significance. 
The colors of these bars indicated the z-score (standard score), with darker colors representing larger absolute value. The scatter plots in the out ring 
showed the regulation of each gene in the corresponding GO terms, with red representing up-regulated and blue representing down-regulated. 
The descriptions of GO categories were displayed in the table by the side. G The common DEGs and their linked GO terms were showed by GO 
chord plot. Different colors corresponding to the genes indicated different fold change levels. H Signaling pathway enrichment analysis for the 
common DEGs. DEGs, Differentially Expressed Genes. GO, Gene Ontology
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as a precondition for system biology. Proteins perform 
their operation inside a cell with the interaction of another 
protein, and information that is produced from a PPI net-
work raises perception about the function of the proteins 
[23]. For the reasons above, the proteins corresponding to 
the common DEGs were constructed into a PPI network 
using the STRING database (Fig.  4A). The network was 
composed of 369 nodes (proteins) and 2032 edges (inter-
actions), and 75 of the 444 genes were filtered out.

Nodes that have the most interactions were considered 
as hub genes [23]. Among the 369 nodes, 24 were iden-
tified as the hub genes with the criteria of node degree 
> 35 (Supplementary Table 6), meaning that each protein 
expressed from these genes has more than 35 interac-
tions. It is worth noting that many of these proteins, such 
as MPO [32] and CD28 [33], have been reported to play 
a role in sepsis. Other proteins like TLR8 could act as a 
potential therapeutic target [34].

Fig. 3  WGCNA analysis and module identification. A-D Sample clustering dendrogram to detect outliers in WGCNA. All samples from the four 
datasets (GSE28750, GSE57065, GSE65682, and GSE69528) had passed the cuts and most of the samples with the same disease were clustered 
together. E Clustering dendrograms of genes, based on topological overlap, together with assigned module colors. As a result, 4 co-expression 
modules were constructed and were shown in different colors. F The gene co-expression network was visualized in the form of heatmap. Light 
color represented low co-expression and progressively darker red color represented higher co-expression. The darker colors along the diagonal 
were the modules. G Module-trait associations. Each row corresponded to a module eigengene, and the column to the traits (diagnosed sepsis or 
healthy). Each cell contained the corresponding correlation and p-value. The table was color-coded by correlation according to the color legend
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Fig. 4  PPI network construction and significant block screening. A A total of 369 proteins corresponding to the common DEGs were screened out 
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Then the Molecular complex detection (MCODE) 
plug-in was subsequently applied to select the signifi-
cant blocks in the PPI network. Two significant blocks 
with the highest scores were screened out. Block 1 
consisted of 21 nodes and 208 edges, while block 2 
was composed of 44 nodes and 371 edges (Fig. 4B-C). 
Notably, ARG1 was located in the central position of 
block 1 (Fig. 4B).

Identification of ARG1 as a key gene in sepsis
Then genes most relevant to sepsis screened by WGCNA 
(Supplementary Table  5) was compared with hub genes 
with more than 35 interactions identified by the PPI net-
work (Supplementary Table 6). ARG1 was found to be the 
only one overlapped gene in both results (Fig. 5), indicat-
ing that this gene was not only highly correlated with the 
clinical phenotype of sepsis, but also played a hub role 
in protein-protein interactions. At the same time, ARG1 
was also located in the central position in block 1 of the 
PPI network (Fig.  4B). These results showed that ARG1 
was a key gene in sepsis.

ARG1 is sharply up‑regulated in the whole blood cells 
of septic patients
In order to verify the role of ARG1 in sepsis, more GSE 
datasets were brought into our analysis and validation 
system. The number of sepsis samples in GSE95233, 
GSE134347, GSE154918, GSE13015, GSE60424, 
GSE131761, GSE8121, GSE26378, GSE26440 and 
GSE145227 was 51, 156, 39, 29, 3, 81, 60, 82, 98 and 10 
respectively, and the number of control samples was 22, 
83, 40, 5, 4, 15, 15, 21, 32 and 12 respectively. Of these 

datasets: (i) Six were from studies conducted in adults 
and four in pediatric subjects; (ii) Five were from stud-
ies that took place in North America, four in Europe and 
one in Asia; (iii) Eight were performed using microarray 
and 2 using RNA-seq. Across 10 datasets, a significant 
increase in transcript abundance of ARG1 was observed 
in the peripheral blood of septic patients compared with 
that in the control groups (Fig. 6), regardless of ethnicity, 
age, or experimental settings. Besides, ROC curves gen-
erated from these datasets further confirmed the role of 
ARG1 in sepsis (Fig. 6). A good biomarker should exhibit 
high sensitivity (the fraction of correctly identified true 
positives) and specificity (the fraction of correctly iden-
tified true negatives), while the sensitivity and specificity 
are reflected by the area under the curves (AUC) value 
in the ROC curve. The AUC value for ARG1 in all plots 
were equal or close to 1, indicating the diagnostic charac-
ter of this gene (Fig. 6).

ARG1 helps to make an accurate diagnosis, discriminate 
the severity and predict the treatment response of sepsis
Considering the high expression of ARG1 in sepsis, we 
next investigated whether ARG1 played a role in distin-
guishing sepsis from diseases with similar symptoms. 
We only found two datasets (GSE131411 from Spain and 
GSE131761 from Italy) that contained peripherial blood 
samples from both septic and non-septic shock cases. 
The number of septic shock cases in GSE131411 and 
GSE131761 was 63 and 81 respectively, and the number 
of non-septic shock cases was 33 and 30 respectively. We 
found that the expression levels of ARG1 were signifi-
cantly higher in septic shock compared with non-septic 

Fig. 5  Identification of ARG1 as the key gene. The genes screened by WGCNA with the greatest GS values were compared with hub genes with 
more than 35 interactions identified through the PPI network. ARG1 was the only one that existed in both groups
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shock (Fig.  7A-B). Since septic shock is a severe form 
of sepsis, and shares similar signs and symptoms with 
non-septic shock, it is of great value to utilize ARG1 as a 
potential biomarker to distinguish the two conditions in 
clinical practice.

Furthermore, since the GSE63042 dataset contained 
28 lethal sepsis cases, 21 severe sepsis cases, and 24 
uncomplicated sepsis cases, we further revealed the 
role of ARG1 in discriminating the severity of this dis-
ease. In this set of data, the expression level of ARG1 in 
severe sepsis and lethal sepsis was significantly higher 
than that in uncomplicated sepsis (Fig.  7C). Moreo-
ver, ARG1 expression was also found up-regulated in 

patients with septic shock (20 cases) compared with 
patients with general sepsis (19 cases) based on the 
dataset from Germany (Fig.  7D). These findings indi-
cated that quantification of the expression level of 
ARG1 may help to identify those at the greatest risk of 
progression and mortality.

Besides, our following investigations found that ARG1 
could also act as an indicator for judging whether it is 
responsive to early supportive therapy. In the dataset from 
Italy, patients received a blood check at Intensive Care Unit 
(ICU) admission at first, and then their responses to the 
early symptomatic treatment were recorded in the next 
few days. No significant difference was found between 32 

Fig. 6  The upregulation of ARG1 in septic individuals compared to controls. The plots represented transcript abundance of ARG1 in peripheral 
blood, as measured by microarray or RNA-seq. The first six were conducted in adults and the following in pediatric subjects. The ROC curve for each 
dataset was located below the corresponding dot plot. The area under the curves (AUC) for all ROC curves were used to predict diagnostic value
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responders and 24 non-responders regarding the source of 
infection, circulating markers of inflammation, or leuko-
cyte and lymphocyte counts [35]. Interestingly, ARG1 was 

high expressed in non-responders compared with respond-
ers of septic patients (P = 0.0017) (Fig.  7E). This finding 
indicated that ARG1 may play a role in establishing the 

Fig. 7  ARG1 could play a role in distinguishing sepsis from other similar diseases, predicting the response of treatment, and reflecting the severity 
of sepsis. A-B ARG1 was upregulated in peripheral blood of patients from Spain (A) and Italy (B) with septic shock compared with non-septic shock. 
The plots represented the transcript abundance of ARG1, as measured by microarray or RNA-seq. C Dataset from the USA showed the expression 
level of ARG1 gene in severe sepsis and lethal sepsis was significantly higher than that in uncomplicated sepsis. D Dataset from Germany showed 
ARG1 was significantly up-regulated in patients with septic shock compared with general sepsis. E Dataset from Italy showed a significant increase 
of ARG1 expression in non-responders to the early stage of treatment compared with responders
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treatment response, and be helpful to predict whether early 
treatment for sepsis is effective.

Validation of ARG1 as a key biomarker using quantitative 
real‑time PCR
To verify the high expression of ARG1 in sepsis, cecal 
ligation and puncture (CLP) was performed on mice to 
induce experimental sepsis. The quantitative real-time 
PCR showed that the transcription abundance of AGR1 
increased dramatically in the peripheral blood of septic 
mice (Fig. 8), demonstrating that ARG1 is highly correlated 
with sepsis and have potential to act as a key biomarker.

Discussion
In clinic, Sequential Organ Failure Assessment (SOFA) 
Score is now recognized as the gold standard for iden-
tifying organ dysfunction in septic patients [1]. Mean-
while, biomarkers could provide better and more rapid 
stratification of patients, thus help treatment. Partly 
due to the complexity of sepsis, it relies on a combina-
tion of biomarkers in clinical practice [6]. For exam-
ple, lactate indicates tissue hypoxia, PCT indicates 
infection, CRP and cytokines indicate inflammation, 
thrombomodulin, thrombin-antithrombin complex 
and D-dimers indicate coagulation, angiopoietin-2 
and von Willebrand Factor indicate endothelial injury, 
and HLA-DR on monocytes indicate immunosup-
pression [8, 36, 37]. Nevertheless, the mechanism of 
sepsis is too complex and the combination of current 
biomarkers is still insufficient to predict outcomes. 
Attributed to both the lack of specific drugs and the 
unsatified diagnosis, the 90-day mortality of sepsis is 
still as high as 32.24%.

Fortunately, in recent decades, genome-wide analysis 
and novel bioinformatic algorithms have been widely 
used to predict more precise and effective biomarkers 
[38]. In this study, we used PPI network and WGCNA 

to reveal promising biomarker genes, which may pro-
vide a supplement to classical biomarkers for septic 
diagnosis.

To carry out bioinformatic analysis, datasets are 
needed. One dataset have been used to identify core 
genes and pathways in diabetes mellitus [39], two data-
sets in cardiac-cerebral vascular disease [40], and three 
datasets in pancreatic cancer [41]. In this study, four 
cohort datasets submitted in the last 10 years were firstly 
used to screen the common DEGs. We chose the datasets 
from different countries representing different ethnici-
ties. Later, the hub genes were identified from the DEGs 
by WGCNA and PPI network parallelly. Among the 
genes identified through the PPI network, many genes 
such as MPO [32], CD28 [33], and TLR8 [34] have been 
reported to play a vital role in sepsis. Similarly, the genes 
screened by WGCNA such as CD177 [27, 28], S100A12 
[29, 30], and CLEC4D [31] have also been described to be 
important in the pathogenesis of sepsis. Notably, ARG1 
was the only overlapped gene in both results, suggesting 
that it may be more closely associated with sepsis.

ARG1 encodes an arginase catalyzing the hydrolysis 
of arginine [42]. Through the hydrolysis of arginine by 
arginases, local L-arginine starvation occurs in higher 
vertebrates. ARG1 protein can be released from human 
granulocytes and maintain a very high activity in extra-
cellular space during the inflammatory process, exert-
ing a strong suppressible effect on immunity [43]. On 
the one hand, ARG1 leads to the suppression of T lym-
phocytes, contributing to the poor prognosis and death 
of septic patients [44–46]. Arginases have been shown 
to impaire T-cell functions by downregulating expres-
sion of T-cell receptor (TCR)-associated CD3ζ and ε 
chains, the critical components of the TCR-signaling 
complex, thereby leading to an immunosuppressive 
state [45]. T cell proliferation can be restored by add-
ing arginine or arginase 1 inhibitor (such as CB-1158) to 
culture medium, indicating the role of ARG1 in immu-
nosuppression [47]. On the other hand, high arginase 
activity leads to the down-modulation of MHC class II 
molecules which are necessary for antigen presentation 
in dendritic cells [48].

Moreover, ARG1 is closely related to vascular dysfunc-
tion. High expression of ARG1 may lead to local L-argi-
nine starvation, while L-arginine is a necessary substrate 
of endothelial nitric oxide synthase (eNOS) in endothe-
lial cells [49]. Through hydrolyzing arginine and disturb-
ing eNOS activity, up-regulation of ARG1 contributes 
to vasodilation dysfunction in different stages of sepsis 
[50]. Collectively, ARG1 could worsen immunosuppres-
sion and vascular dysfunction during sepsis, leading 
to the poor prognosis, which is in accordance with our 
findings.

Fig. 8  Validation of ARG1 as a key biomarker of sepsis. Real-time PCR 
showed that ARG1 was sharply up-regulated in CLP-induced septic 
mice. N = 7 for each group. *** P < 0.001
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To further verify the role of ARG1 as a key biomarker, 
we analyzed more datasets representing more popula-
tions. Interestingly, the transcript abundance of ARG1 
was not only higher in sepsis than that in healthy con-
trols, but also higher in septic shock than that in non-
septic shock, higher in severe or lethal sepsis than that in 
uncomplicated sepsis, and higher in non-responders than 
that in responders upon early treatment. Consistently, 
a meta-anslysis also reported the upregulation of ARG1 
during sepsis [51]. Our experimental results using sep-
tic mice further verified the upregulation of ARG1 in the 
peripheral blood cells of septic animals. All these infor-
mations indicated the potential of ARG1 as a biomarker 
in accurate diagnosis, prediction and treatment of sepsis. 
Since the transcription level of ARG1 is significantly high 
in sepsis, Q-PCR could be a promising method for rapid 
test of ARG1 as a biomarker.

In conclusion, our study showed ARG1 could act as a 
potential “multifunctional” biomarker to provide more 
information for the diagnosis of sepsis, prediction of 
severity, and judgement of the responsiveness to support-
ive therapy. Besides, this study provided a novel strategy 
to identify biomarkers by looking for the common genes 
screened by PPI network and WGCNA.
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