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N6‑methyladenosine‑related lncRNAs 
is a potential marker for predicting prognosis 
and immunotherapy in ovarian cancer
Xin Nie1,2 and Jichun Tan1,2* 

Abstract 

Background:  With a lack of specific symptoms, ovarian cancer (OV) is often diagnosed at an advanced stage. This 
coupled with inadequate prognostic indicators and treatments with limited therapeutic effect make OV the deadliest 
type of gynecological tumor. Recent research indicates that N6-methyladenosine (m6A) and long-chain non-coding 
RNA (lncRNA) play important roles in the prognosis of OV and the efficacy of immunotherapy.

Results:  Using the Cancer Genome Atlas (TCGA) OV-related data set and the expression profiles of 21 m6A-related 
genes, we identified two m6A subtypes, and the differentially expressed genes between the two. Based on the differ-
entially expressed lncRNAs in the two m6A subtypes and the lncRNAs co-expressed with the 21 m6A-related genes, 
single-factor cox and LASSO regression were used to further isolate the 13 major lncRNAs. Finally, multi-factor cox 
regression was used to construct a m6A-related lncRNA risk score model for OV, with good performance in patient 
prognosis. Using risk score, OV tumor samples are divided into with high- and low-score groups. We explored the 
differences in clinical characteristics, tumor mutational burden, and tumor immune cell infiltration between the two 
groups, and evaluated the risk score’s ability to predict the benefit of immunotherapy.

Conclusion:  Our m6A-based lncRNA risk model could be used to predict the prognosis and immunotherapy 
response of future OV patients.
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Background
Ovarian cancer lacks specific symptoms, so about 75% 
of patients are already at an advanced stage upon diag-
nosis, consequently the five-year survival rate for patients 
is only 46% [1]. Currently, surgery in combination with 
radiotherapy and chemotherapy is the main treatment 
method, but it has limited therapeutic effect [2]. More-
over, current tumor markers and tumor stage systems 
are still ineffective at predicting survival outcome and 
therapeutic efficacy of heterogeneous ovarian cancer. An 

understanding of the genomic characteristics of ovarian 
cancer could help predict individual survival, recurrence 
risk, and treatment efficacy.

N6-methyladenosine (m6A) is the most important 
and abundant internal modification in not only mes-
senger RNA (mRNA), but also lncRNA in higher eukar-
yotes. m6A affects various stages of RNA metabolism, 
folding, splicing, translation and degradation [3]. m6A 
interacts with m6A methyltransferase (writers), such 
as WTAP, METTL3, METTL14, RBM15, and ZC3H13, 
to add methyl groups to RNA. Special proteins that 
can bind to methylation binding sites (readers), such 
as YTHDC1, YTHDC2, YTHDF1, YTHDF2, YTHDF3, 
and HNRNPC, recognize the modified RNA and pro-
duce different functions. Relying on the role of m6A 
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demethylase (erasers) like FTO and ALKBH5, the 
methylation modification process is dynamically revers-
ible and plays a role in regulating the expression of vari-
ous genes[4–7].Genetic changes and mutations of m6A 
regulators are related to a variety of diseases, including 
cell death and proliferation disorders, impaired self-
renewability, developmental defects, abnormal immune 
regulation, and malignant tumor progression [8–13]. 
lncRNAs are a group of RNAs that are longer than 200 
nucleotides without any protein coding potential[14], 
but are a newly discovered regulatory factor for gene 
expression and a variety of physiological and patho-
logical processes [15–17]. m6A modifications in mRNA 
and lncRNA can predict the prognosis and therapeutic 
effect for a variety of tumors [18–21]. However, there 
are few studies specifically exploring m6A methylation 
in ovarian cancer.

In this study, using the Cancer Genome Atlas (TCGA) 
OV-related data set, we determined the prognosis of 
21 m6A modifications in ovarian cancer, and used the 
expression profiles of m6A-related genes to identify 
two m6A subtypes. We then constructed an ovarian 
cancer risk model based on the differentially expressed 
lncRNAs between m6A subtypes and the lncRNAs co-
expressed with m6A-related genes. This risk model was 
used to not only evaluate the predictive ability of the 
risk score for tumor prognosis, but also the benefit of 
existing immunotherapies and the development of new, 
more precise immunotherapy.

Materials and methods
Obtaining expression profile data and clinical information
The overall analysis progression is shown in the analysis 
flow chart (Fig. 1). First, we downloaded the OV expres-
sion profile data and clinical follow-up information data 
from the TCGA database (https://​portal.​gdc.​cancer.​
gov/). Next, we determined the RNA-Seq data for the 
TCGA-OV samples by (1) removing all samples without 
clinical follow-up information, then (2) removing all sam-
ples with unknown survival time, < 30 days, and no sur-
vival status. Finally, we (3) converted the probe to gene 
symbols and (4) removed individual probes that corre-
sponded to multiple genes, then (5) the median value was 
the expression of multiple gene symbols. After this pre-
processing of the TCGA-OV data, there were a total of 
323 tumor samples, with their clinical statistics listed in 
Table 1. Two eligible data from Gene Expression Omni-
bus (GEO) database (GSE26193 and GSE9891) were 
downloaded and an averaging method with the affy and 
simpleaffy packages was used to perform background 
adjustment and quantile normalization.

Consistent clustering of tumor m6A‑related gene 
expression profiles
Using the ConsensuClusterPlus package in R software, 
unsupervised clustering was performed, and repeated 
1000 times to ensure stable classification. The overall sur-
vival (OS) between different clusters was calculated using 
the Kaplan–Meier method.

Fig. 1  The work flow chart

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
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Differentially expressed genes between tumor m6A 
subtypes
Using the expression of m6A-related genes and the con-
sistent clustering results, tumor samples were divided 
into two groups: m6A-1 and m6A-2. The limma package 
of R software analyzed the differential expression of genes 
between the two groups. We set the screening thresh-
old to adjusted P < 0.05 and |log2 (Fold Change)|> 1, and 
used the genome annotation file (*.GTF) in Ensemble to 
extract the lncRNA of the differentially expressed genes 
(DEGs).

Dimensionality reduction of gene features 
and construction of m6A‑related lncRNA risk score model
Using the m6A subtype-related lncRNAs we constructed 
a risk score model for OV. First, we used the single-factor 
cox algorithm to remove redundant genes and reduce the 
size of the lncRNA gene set related to immune cell infil-
tration subtypes. Following reduction, the least absolute 
shrinkage and selection operator (LASSO) (Tibshirani 
1996) method was used to filter the variables and fur-
ther reduce the number of genes included the risk model. 
Finally, multi-factor cox regression was used to construct 
the risk score model for tumor immune cell infiltration. 
The calculation formula is as follows:

Gene set enrichment analysis
To determine the influence of synergistic genetic changes 
on phenotypic changes, one or more functional gene 

Risk_scores =
∑

Coef (i)∗Exp(i)

sets in MSIGDB (Molecular Signatures Database) were 
selected for analysis (*.GMT), and then sorted based on 
the degree of correlation between gene expression data 
and phenotype, or the amount of expression. Then, gene 
set enrichment analysis (GSEA) (2005) with both gene 
ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) was used to determine whether those 
genes were enriched in the upper or lower part of the 
gene list.

Statistical analysis and hypothesis testing
All the statistical comparisons involved in this study and 
the hypothesis testing for the significance of differences 
between groups were conducted in R 3.6 (http:// www.R-​
proje​ct.​org). In all analyses, P-values were bilateral, and 
P < 0.05 was considered statistically significant.

Results
Molecular characteristics of m6A‑related genes in OV
Using the expression levels of 21 m6a-related genes, sam-
ples from the TCGA-OV data set were divided into two 
groups according to the optimal density algorithm. High 
expression of METL3, ZC3H13, ALKBH5, and YTHDC1, 
and low expression of WTAP, KIAA1429, RBM15, 
YTHDC2, and YTHDF1 correlated with good overall 
survival (OS) prognosis (Fig. 2). Indeed, 96.91% of tumor 
samples had gene mutations, of which 90% and 21% were 
in TP53 and TTN respectively (Fig.  3A). Furthermore, 
mutations in TP53 were significantly correlated with high 
expression of FTO (P < 0.05)(Fig.  3B), and mutations in 
TTN were significantly correlated with low expression of 
both METTL3 and HNRNPC (P < 0.05)(Fig.  3C and D). 
The expression of 21 m6A-related genes is correlated, 
indicating that the expression of genes can promote each 
other (Fig. 4).

Identification of m6A subtypes and differentially expressed 
genes in OV
Two independent m6A subtypes with obvious survival 
differences were determined based on the expression val-
ues of 21 m6A-related genes. m6A-2 had a significantly 
better prognosis than m6A-1, with a median survival 
time of 1,123  days. Conversely, m6A-1 was associated 
with poor prognosis, with a median survival time of only 
941 days (Fig. 5).

We identified the DEGs between the m6A subtypes 
(TableS1), of which eight were highly expressed in the 
m6A-1, and 135 genes were highly expressed in m6A-2 
(Fig. 6A). GO functional enrichment analysis results are 
displayed with bubble diagrams (Fig.  6B), and the top 
ten pathways enriched were in three functional catego-
ries: biological process (BP), molecular function (CC), 
and molecular functions (MF). Most of the enriched 

Table 1  Clinical characteristics of patients in TCGA-OV data set

Features TCGA-OV

Survial

Status_0 120

Status_1 203

Age

Age > 60 145

Age <  = 60 178

Gender

Female 323

Stage

Stage_II 14

Stage_III 260

Stage_IV 49

Grade

G1/2 44

G3/4 279

http://www.R-project.org
http://www.R-project.org
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pathways were related to biological processes such as 
synaptic organization, ion channels, and transmembrane 
transport. Among the identified DEGs, there are 20 
lncRNAs (Table S2), and their expression levels are sig-
nificantly different between m6A-1 and m6A-2 (P < 0.05)
(Fig.  6D). And the top ten pathways enriched in KEGG 
enrichment analysis were fatty acid metabolism, galac-
tose metabolism, pentose phosphate pathway, glycolysis 
gluconeogenesis, fructose and mannose metabolism, cit-
rate cycle, TCA cycle, steroid biosynthesis, primary bile 
acid biosynthesis, pentose and glucoronate interconver-
sions, and ascorbate and aldarate metabolism (Fig.  6C). 
The ggGSEA method further analyzed the infiltration 
patterns of m6A-1 and m6A-2 subtypes in 28 immune 
cells (Fig.  6E), and there was consistency between the 
expression profile and prognosis profile of m6A-related 
genes in OV tumors, indicating accurate classification of 
the two m6A subtypes.

Construction of m6A‑related lncRNA risk score model 
for ovarian cancer
Pearson correlation coefficient indicated that lncRNAs 
are co-expressed with m6A-related genes (P-value < 0.001 
and |R|> 0.5), and 361 lncRNAs (Table S3) had a signifi-
cant co-expression relationship with at least one m6A-
related gene. In order to include more m6A-related 
lncRNAs, we combined 143 DEGs with 361 co-expressed 
genes, and got 381 m6A-related lncRNAs to construct 
a risk scores model for tumor immune cell infiltration. 
First, the TCGA-OV overall set (n = 323) was divided 
into a training set (n = 215) and a test set (n = 108) 
according to an approximate 2:1 ratio. In the training 

set, single factor cox was used to analyze the 381 candi-
date lncRNAs (P-value < 0.1), and only 16 lncRNAs were 
retained (Table S4, Fig. 7A). For the convenience of clini-
cal use, LASSO further screen the variables and retained 
13 lncRNAs (Fig. 7B-C). Finally, multi-factor cox regres-
sion constructed a lncRNA risk scoring model related 
to tumor immune cell infiltration. The final 13-lncRNA 
gene signature formula is as follows:

In order to judge the impact of the risk scores con-
structed by these 13 lncRNAs on OS training samples 
were divided into high- and low-risk groups (Fig.  7D). 
The high-risk group had a higher proportion of death 
samples. Kaplan–Meier analysis showed that the OS of 
patients in the high-risk group was significantly lower 
than that of the low-risk group (P < 0.05) (Fig.  7E). Risk 
scores accurately predicted the OS of the TCGA-OV data 
set. The one-, three-, and five-year areas under the curves 
were 0.7516, 0.7430, and 0.7749, respectively (Fig. 7F).

Subsequently, similar processing was applied to the 
test set and the overall set of TCGA-OV and samples 
were divided into high- and low-risk groups. Again, the 

RiskScore = (−0.065) ∗ TLR8 − AS1 + (−0.071)

∗ LINC01215 + (0.009) ∗ LINC01579

+ (−0.032) ∗ LINC01354 + (0.057)

∗ LINC01234 + (0.116) ∗ AATBC

+ (−0.225) ∗ BACE1 − AS + (0.052)

∗ LINC00467 + (0.393) ∗ LINC00662

+ (−0.102) ∗ LINC00997 + (0.272)

∗ LINC01132 + (−0.503) ∗ SEC24B − AS1

+ (−0.015) ∗ SH3RF3 − AS1

0.50

1.00

0 1000 2000 3000 4000
Time of days

S
ur

vi
va

l p
ro

ba
bi

lit
y

++++++++++++++++++

+++
++++

+ + +++

++++++++++++++++++++++++++++++++++++++++++++++++++++++
++++++++++++++++++++++++++++ ++++

p = 0.013

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000 4000
Time of days

S
ur

vi
va

l p
ro

ba
bi

lit
y

+++++++++++++++++++++++

+

+++++++++++
+ +++

+++++++++++++++++++++++++++++++
+++++++++++++++++

+++++++++++++++++++ ++++++ ++++
p = 0.08

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000 4000
Time of days

S
ur

vi
va

l p
ro

ba
bi

lit
y

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+++++++++

+++++++++++++++++++++ + ++++++

++

+
+ +

+

+
p = 0.079

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000 4000
Time of days

S
ur

vi
va

l p
ro

ba
bi

lit
y

+++++++++++++++++++++++++++++++++++++++++++++++++++++++
++++++++

++++++++++++++++
+++

+++++++++++
++++++++

++++++
+++++

+++++p = 0.028

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000 4000
Time of days

S
ur

vi
va

l p
ro

ba
bi

lit
y

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
++++++++

+++++++++++++++++++ + +++++

+++
++
+

+++++ +

++p = 0.037

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000 4000
Time of days

S
ur

vi
va

l p
ro

ba
bi

lit
y

++++++++++++
++++
++

+
++

+

++++++++++++++++++++++++++++++++++++++++++++++++++++++
+++++++++++++++++++++++++++++++ ++++++++

p = 0.045

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000 4000
Time of days

S
ur

vi
va

l p
ro

ba
bi

lit
y

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
++++++++

++++++++++++++++++++++ + +++++

++++++

+
+
++

+

++
p = 0.14

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000 4000
Time of days

S
ur

vi
va

l p
ro

ba
bi

lit
y

++++++++
+++++

+

+++++
+

++++++++++++++++++++++++++++++++++++
+++++++++++++++++++++++++++++++++++++++++++++++++++ +++++++

p = 0.04

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000 4000
Time of days

S
ur

vi
va

l p
ro

ba
bi

lit
y

+++++++++++++++++++++++++++++++++++++++++++++++++++++
+++++++++++++++++++++++ + ++++

++++++++++++++++++++
+++++

+
++++

++
+++

p = 0.064

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000 4000
Time of days

S
ur

vi
va

l p
ro

ba
bi

lit
y

+++++++++++++++++++++++++++++++++++
+
+

++++++++++++++
+ ++++

++++++++++++++++++++++++
+++++++++++++

+++++++++++++++++++ +++
p = 0.011

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000 4000
Time of days

S
ur

vi
va

l p
ro

ba
bi

lit
y

++++++++++++++++++++++++++++

+
+++++++++++++++++ + ++++

++++++++++++++++++++++++++++
+++++++++++++++++++++++++++

+++
+ ++++

+++
p = 0.016

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000 4000
Time of days

S
ur

vi
va

l p
ro

ba
bi

lit
y

+++++++++
+

+

++
+++++

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+++++++++++++++++++++++++++++ ++++++++

p = 0.049

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000 4000
Time of days

S
ur

vi
va

l p
ro

ba
bi

lit
y

++++++++++
+++

+++

+

++++
+

+++++++++++++++++++++++++++++++++
+++++++++++++++++++++

++++++++++++++++++++++++++++++ +++++++
p = 0.22

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000 4000
Time of days

S
ur

vi
va

l p
ro

ba
bi

lit
y

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
++++++++

++++++++++++++++++++ + +++++

+ +

+
+++

+ ++
+

+ +
p = 0.18

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000 4000
Time of days

S
ur

vi
va

l p
ro

ba
bi

lit
y

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+++++++++

+++++++++++++++++++++ + ++++

+
+++

+

++
+++

+++p = 0.19

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000 4000
Time of days

S
ur

vi
va

l p
ro

ba
bi

lit
y

+++++++++++++++++++++
+++++++++++++++

+++++
+++++++ + + ++

++++++++++++++++++++++++++
++++++++++

++
++++++++++++++++++++++

+++++
p = 0.041

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000 4000
Time of days

S
ur

vi
va

l p
ro

ba
bi

lit
y

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+++++++++

++++++++++++++++++ + ++++++

+++

+

+++
+++

+
p = 0.2

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000 4000
Time of days

S
ur

vi
va

l p
ro

ba
bi

lit
y

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+
++++

++++++++++++++++++ + ++++

++++++++
+++++++

++++++++

++
+++p = 0.11

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000 4000
Time of days

S
ur

vi
va

l p
ro

ba
bi

lit
y

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+++++++++

+++++++++++++++++++ + +++++

+++

+ +
++

++
++p = 0.093

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000 4000
Time of days

S
ur

vi
va

l p
ro

ba
bi

lit
y

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+++++

++++++++++++++++ + +++++

++++++++++
++

+++++++
+++ ++++

++
p = 0.058

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000 4000
Time of days

S
ur

vi
va

l p
ro

ba
bi

lit
y

+++++++++ ++++++

+
+

++++ ++++

+
+

+++++++++++++++++++++++++++++++++++++
+++++++++++++++++++++++++++++++++++++++ ++++++ ++++++

p = 0.098

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000 4000
Time of days

S
ur

vi
va

l p
ro

ba
bi

lit
y

+ ++ +High Low + +High Low + +High Low + +High Low + +High Low + +High Low + +High LowMETTL3 WTAP RBM15B ALKBH5 HNRNPCIGF2BP1 YTHDF1

+ +High Low + +High Low + +High Low + +High Low + +High Low + +High Low + +High LowMETTL14 KIAA1429 ZC3H13 YTHDC1 IGF2BP2 YTHDF2 HNRNPA2B1

+ +High Low + +High Low + +High Low + +High Low + +High Low + +High Low + +High LowMETTL16 RBM15 FTO YTHDC2 IGF2BP3 YTHDF3 RBMX

Fig. 2  The expression and survival analysis of the 21 m6A-related genes in the TCGA-OV dataset
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high-risk group had a higher proportion of death samples 
(Fig. 8A, 8D). Kaplan–Meier analysis showed that OS of 
patients in the high-risk group was significantly lower 
than that of the low-risk group (P < 0.05)(Fig.  8B, 8E). 

Risk scores accurately predicted OS in the TCGA-OV 
test set and overall data set. The test set’s one-, three-, 
and five-year AUCs were 0.6505, 0.7444, and 0.7330, 
respectively (Fig.  8C), and the overall set’s one-, three-, 
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and five-year AUCs were 0.6225, 0.6852,and 0.7237, 
respectively (Fig. 8F).

In order to further evaluate the robustness of the risk 
scores constructed by 13-lncRNA in predicting the OS of 
OV tumors, this study selected two data sets, GSE26193 
and GSE9891, from the GEO database for analysis. First, 
samples were divided into high-and low-risk groups, and 
the high-risk group had a higher proportion of death 
samples (Fig.  9A, 9D). Kaplan–Meier analysis showed 
that the OS of patients in the high-risk group was sig-
nificantly lower than that of the low-risk group (P < 0.05)
(Fig. 9B, 9E). As shown in the GSE26193 data set, the risk 
scores value accurately predicted OS, and its one-, three-, 
and five-year AUCs were 0.5661, 0.6181, and 0.6592 
respectively (Fig. 9C). Similarly, in the GSE9891 data set, 
the risk scores value also accurately predicted OS, and its 

one-, three-, and five-year AUCs were 0.6303, 0.6251, and 
0.6617 respectively (Fig. 9F).

The relationship between risk score and clinical features
Patient age and tumor grade are important clinical 
characteristics, consequently, it is necessary to clarify 
their relationship with tumor risk score. First, multivar-
iate cox analysis determined that risk score is an inde-
pendent prognostic factor different from age, stage, and 
grade (Fig. 10A). Next, we used risk score and age, since 
were both significant independent prognostic indica-
tors, to construct a nomogram for the convenience of 
clinical judgment. The result show that Risk score had a 
more significant effect on prognosis (P < 0.05)(Fig. 10B). 
The calibration curve showed that the nomogram had 
high accuracy (Fig.  10C). The DCA curve analysis 
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Fig. 4  The interaction between m6A-related genes in ovarian cancer. The circle size represented the effect of each regulator on the prognosis, and 
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were marked with black, red and green, respectively
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showed that the net benefit in the nomogram when 
predicting the five-year survival was higher than at one- 
and three-years, meaning the model is more suitable 
for predicting the five-year patient survival (Fig. 10D).

Relationship between tumor risk score and tumor 
mutation burden
Tumor mutational burden (TMB) may determine an 
individual’s response to cancer immunotherapy, there-
fore exploring the relationship between TMB and risk 
score may clarify the genetic characteristics of each 
m6A subgroup. We used the Survminer package in 
R to calculate the optimal density gradient threshold 
associated with the TMB score and patient survival. 
As previously, the tumor samples in TCGA-OV were 
divided into high- and low-TMB score groups, and 
there was a significant difference in survival between 
the two groups (Fig.  11D). Subsequently, a correlation 
analysis was performed and risk score was significantly 
negatively correlated with TMB (P < 0.05)(Fig.  11A). 
Furthermore, when comparing the TMB of patients 
between the high- and low-risk score groups, TMB of 
the high-risk group was significantly lower than the 
low-risk group (Fig. 11B and C).

Next, we evaluated the distribution of somatic varia-
tion in OV driver genes between the high- and low-risk 

groups, and compared the top 30 driver genes with the 
highest change frequency (Fig. 11E and F). By analyzing 
the mutation annotation files of the TCGA-OV cohort, 
there were significant differences in the mutation profiles 
between the high and low immune cell infiltration (ICI) 
subgroups (P < 0.05). These results may provide new ideas 
for studying the mechanism of tumor m6A status and 
gene mutations in immune checkpoints.

The relationship between risk score and immune cell 
infiltration
In order to explore the relationship between the risk 
score constructed by tumor m6A-related lncRNAs and 
the tumor immune microenvironment, we used GSEA 
to evaluate the tumor infiltration status of 28 immune 
cells in the TCGA-OV data set. From the overall level 
of tumor immune cell infiltration, immune cells with 
high levels of infiltration in OV tumors were central 
memory CD4 T cells, CD56 bright natural killer cells, 
CD56 dim natural killer cells, immature dendritic 
cells, monocytes, natural killer cells, and plasmacy-
toid dendritic cells. The overall low-level infiltrating 
immune cells are mainly neutrophils (Fig. 12A). Next, 
a hypothesis test was performed on the difference in 
immune cell infiltration in the high and low risk score 
groups, and the results showed that the high-risk 

Fig. 5  Consensus clustering of tumor m6A-related gene expression profiles. A-C The clustering results when the number of classifications is 
k = 2, 3, and 4. D CDF curve distribution of uniform clustering. E–G The survival curve when the number of classifications is k = 2, 3, and 4. H The 
distribution of the area under the CDF curve of consistent clustering
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Fig. 6  Identification and functional analysis of differentially expressed genes among tumor m6A subtypes. A Volcano plots displaying the genes 
that were differentially expressed between the tumor m6A subtypes. B Functional annotation using GO enrichment analysis. The size of the 
bubble represented the number of genes enriched. C Enrichment fraction heat map of the KEGG pathway. The OS status, TTN, TP53, tumor stage, 
gender, age and m6A clusters were used as patient annotations. D PCA analysis of the expression profile. E The abundance of each tumor immune 
infiltrating cell in two m6A subtypes. The upper and lower ends of the boxes represented interquartile range of values. The lines in the boxes 
represented median value, and black dots showed outliers. The asterisks represented the statistical P value (*P < 0.05; **P < 0.01)
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group had significantly higher infiltration levels of 
activated dendritic cells, central memory CD8 T cells, 
effector memory CD4 T cells, immature dendritic 
cells, macrophages, mast cells, MDSCs, memory B 

cells, natural killer cells, neutrophils, plasmacytoid 
dendritic cells, regulatory T cells, T follicular helper 
cells, and type 1 T helper cells than the low-risk group 
(Fig. 12B).

Fig. 7  Screening of lncRNA and construction of risk model. A Single factor cox regression and forest plot were applied to examine the hazard ratio 
(HR) and 95% confidence interval of each lncRNA. B The change trajectory of each independent variable, the horizontal axis represents the log 
value of the independent variable lambda, and the vertical axis represents the coefficient of the independent variable. C Confidence interval under 
each lambda. D Distribution map of risk score. E Overall survival analysis for patients in high/low risk. F The ROC curve of risk score
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Assess the ability of tumor risk score to predict the benefit 
of immunotherapy
In order to explore the predictive ability of risk score in 
the benefit of patients with immunotherapy, this study 
was based on the IPS score of the TCGA-OV sample 
in the TCIA database and the IMvigor210 data set 
(http://​resea​rchpub.​gene.​com/​IMvig​or210​CoreB​iolog​
ies) of the immunotherapy cohort to perform related 
evaluation and analysis. Immunophenoscore (IPS) 
score can determine the immunogenicity of tumors. 
The IPS scores of the four types (ips_ctla4_neg_pd1_
neg, ips_ctla4_pos_pd1_neg, ips_ctla4_neg_pd1_pos, 
and ips_ctla4_pos_pd1_pos) against risk score and 
found that all four were significantly higher in the low-
risk group than the high-risk group, suggesting that 
patients in the low-risk group are more likely to ben-
efit from immunotherapy. In the IMvigor210 cohort, 
patients receiving anti-PD-L1 immunotherapy were 
assigned high- or low-risk scores, with patients in the 

low-risk group having a better prognosis than those 
in the high-risk group (Fig.  13E). Risk score then, is 
related to the objective response of anti-PD-L1 treat-
ment (Fig.  13F). The non-remission group (SD/PD) 
was associated with a higher risk score than the remis-
sion group (CR/PR) (Fig.  13G, 81.09% vs. 61.67%). 
Complete remission (CR): All target lesions disap-
peared, no new lesions appeared, and tumor mark-
ers remained normal for at least four weeks. Partial 
remission (PR): The total maximum diameter of the 
target lesion is reduced by ≥ 30%, and it is maintained 
for at least four weeks. Stable disease (SD): The sum 
of the maximum diameters of the target lesions, the 
reduction does not reach the PR, or the enlargement 
does not reach the PD. Progressive disease (PD): The 
sum of the maximum diameters of the target lesions 
increased by at least ≥ 20%, or new lesions appeared. 
CR + PR = objective relief (OR). Reduced less than PR 
(baseline lesion total length diameter reduction ≥ 30%) 

Fig. 8  Test set and overall set to verify the risk model. A The distribution map of the risk score of the test set. B Survival curve of the test set. C The 
ROC curve of the test set at one-, three-, and five-years. D Distribution map of the overall set of risk scores. E Overall set survival curve. F The ROC 
curve of the overall set of one-, three-, and five-years

http://researchpub.gene.com/IMvigor210CoreBiologies
http://researchpub.gene.com/IMvigor210CoreBiologies
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or increased less than PD (baseline lesion total length 
diameter increased ≥ 20% or new lesions appeared, or/
and non-target lesions progressed), one or more non-
target lesions and/or abnormal markers.). Overall, this 
indicated that the risk score constructed by the m6A-
related lncRNA model may be related to immunother-
apy response.

Discussion
OV is one of the three major malignant tumors in gyne-
cology. Due to early asymptomatic tumor metastasis 
and treatment resistance of ovarian cancer, the five-
year survival rate of patients is very low [22]. At pre-
sent, there is no effective way to predict OV prognosis. 
It has been found that the invasion and metastasis of 
OV is regulated by the molecular characteristics of the 
genome [23]. In various cancers, writers catalyze m6A 
modification in the mRNA of oncogenes or tumor sup-
pressor genes, and then readers recognize the behavior 

of these markers through a series of molecular biologi-
cal effects, thereby up-regulating or down-regulating 
the expression of oncogene and tumor suppressor gene. 
Conversely, erasers remove m6A from the mRNA to 
cause the modification, preventing readers from rec-
ognizing and playing its molecular biological roles, 
thereby up-regulating or down-regulating the expres-
sion of oncogene and tumor suppressor gene[24]. Some 
m6A regulators are abnormally expressed in OC, such 
as YTHDF1, YTHDF2, METTL3, ALKBH5 etc., and 
promote or disrupt the development or maintenance of 
tumour phenotypes [25]. As the most common mRNA 
and lncRNA modification, m6A methylation plays dif-
ferent roles in a variety of tumors, including occurrence, 
proliferation, invasion, and metastasis [3, 24, 26]. At 
present, the role of m6A modification in the prognosis 
of OV is still unclear. We divided 21 m6A RNA meth-
ylation-related genes into two groups, high- and low-
expression, and found that expression of most of these 
genes is related to prognosis (Fig. 2). Indeed, YTHDF1 

Fig. 9  The external data sets GSE26193 and GSE9891 validate the risk model. A The distribution map of the risk score of the GSE26193 data set. B 
ROC curve of GSE26193 data set at one-, three-, and five-years. C Survival curve of the GSE26193 data set. D The distribution map of the risk score of 
the GSE9891 data set. E ROC curve of the GSE9891 data set at one-, three-, and five-years. F Survival curve of the GSE9891 data set
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is often amplified in ovarian cancer, and its up-regula-
tion is related to poor prognosis [27]. METTL3 predicts 
shorter overall survival in glioblastoma, longer survival 
in breast cancer [28], and is also highly expressed in OV 
and promotes cell proliferation, lesion formation, move-
ment, invasion, and tumor formation, and indicates 
poor prognosis [29]. High expression of ALKBH5 in OV 
also indicates poor prognosis [30]. However, most stud-
ies focus on a single m6A-related gene, making it diffi-
cult to elucidate the overall prognostic predictive effect 
mediated by the integration of multiple m6A modula-
tors. We found that expression levels of 21 m6A-related 
genes are related to and promote the expression of each 
other (Fig. 4), so there may be a synergistic effect on the 
predicted results.

Tumor cells continue to mutate as they progress, 
which is reflected not only the genetics, but also anti-
gen expression, cell morphology, and behavior [31]. 
Tumor heterogeneity allows tumors to resist external 
pressure, and is closely related to tumor metastasis, 
drug resistance, and clinical prognosis [32]. We found 
that 96.91% of OV samples have genetic mutations, 
most significantly in TP53 and TTN, which were signifi-
cantly related to the expression of m6A-related genes 
FTO, METTL3, and HNRNPC (Fig. 3). TP53 is a tumor 
suppressor gene highly associated with tumors [33]. 
After mutation, TP53 has a gain of function (GOF), 
including inhibiting the activity of wild-type TP53 and 
inducing abnormal gene expression to promote tumo-
rigenesis. Epithelial ovarian cancer has a high degree 

Fig. 10  The clinical value of predictive models. A Forest plot of multivariate cox analysis. B Nomogram predicts patients’ OS at one-, three- and 
five-years. C The calibration curve of the nomogram predicts the patient’s one-, three-, and five-year OS relative to the actual survival time. D The 
DCA curve evaluates the clinical benefits and the application range of the nomograms. Black indicates all samples are negative and have not 
undergone any treatment, so the net profit is 0. Gray indicates that all samples are positive and have been processed. The x-axis represents the 
threshold probability of patients with the condition
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of genetic instability characterized by TP53 mutations 
[34, 35]. FTO expression is significantly downregulated 
in thyroid cancer, as a tumor suppressor, and may affect 
metastasis through the TP53 pathway [36]. TTN (titin) 
is a structural protein in striated muscle, and plays a 
role in protein formation in muscle fibers, maintains 
static tension and elongated elasticity [37]. TTN, which 
is frequently detected in solid tumors, is associated with 
increased TMB and correlated with objective response 
to Immune checkpoint blockade [38]. Study found that 
TP53 and TTN mutations were associated with the 

expression of UBE2T, which was associated with poor 
prognosis of ovarian cancer [39]. The mutations in TP53 
and TTN in OV are inseparable from tumor heterogene-
ity. We found that m6A-related genes are also involved 
in the mutation process, indicating that m6A may play a 
role in tumor heterogeneity.

We typed m6A-related genes based on prognostic anal-
ysis (Fig.  5). Analyzing DEGs, the GO function enrich-
ment of highly expressed genes is mainly in the processes 
of synaptic tissue, ion channels and transmembrane 
transport, while KEGG enrichment is related to energy 

Fig. 11  The relationship between tumor risk score and tumor mutation burden. A Correlation linear regression analysis shows that risk score is 
significantly negatively correlated with TMB. B,C Proportional distribution bar graph and Violin diagram of the relative distribution of TMB in high 
risk score versus low risk score subgroups. D Survival curve of high- and low-TMB score groups. E Waterfall chart of gene mutations in the high-risk 
group. F Waterfall chart of gene mutations in the low-risk group
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conversion and metabolism (Fig.  6). In order to adapt 
to rapid proliferation and differentiation, the informa-
tion transmission and material transformation between 
or within tumor cells must increase significantly, and 
energy conversion needs to be reconstructed, creat-
ing a microenvironment suitable for tumor cell survival, 
enhancing the ability of invasion and metastasis, and also 

helping tumor cells to escape the body’s immune system 
and apoptosis mechanisms [40]. m6A-related genes are 
closely related to tumor metabolism [41]. The m6A mod-
ification on lncDpf3 in dendritic cells regulates the rec-
ognition and binding of YTHDF2, thereby inhibiting the 
glycolytic metabolism regulated by the glycolytic gene 
Ldha [42].

Fig. 12  The relationship between tumor risk score and immune cell infiltration. A Heat map of the distribution of immune cell infiltration ratio. B 
Box plot of differences in immune cell infiltration between high and low risk score groups
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We also found that the ICI pattern was significantly 
related to the m6A subtype (Fig.  6). The m6A-1 sub-
type was characterized by poor prognosis with a sig-
nificant increase in effector memory CD8T cells, 
macrophages, and plasmacytoid dendritic cells, and 
a significant decrease in activated CD4 T cells and 
activated CD8 T cells. In tumor immunity, tumor ICI 
is the result of mutual balance and mutual adapta-
tion with the tumor cell [43]. At the same time, it is 
also a competition between the body’s anti-tumor 
immune response and tumor immune escape, which 
affects the occurrence of tumors and the regulation of 
the body’s immune system [43]. These results indicate 
that there is a potential relationship between m6A and 
ICI, and indeed, our risk model verified the relation-
ship between m6A-related genes, prognosis, and the 
immune microenvironment.

lncRNA not only regulates the proliferation, differen-
tiation, invasion, and metastasis of cancer cells, but also 
regulates metabolic reprogramming [44, 45]. lncRNA 
promotes energy metabolism and cancer progression 
through post-translational modifications including 
ubiquitination, phosphorylation, and acetylation of key 
metabolism-related proteins [46, 47]. lncRNA is closely 
related to tumor progression and plays an important role 
in the malignant transformation of OV [48, 49]. lncRNAs 
such as NBAT-1 and RP11-190D6.2 are down-regulated 
in ovarian cancer cells and are significantly correlated 
with FIGO stage and tumor size [50, 51]. lncRNAs such 
as lncBRM, LINC00152, and EIBC are up-regulated in 
ovarian cancer, and are also related to FIGO stage, his-
tological classification, lymph node metastasis, and 
poor prognosis [52–54]. Based on the GSE9891 and 
GSE30161OC microarray data sets extracted from the 

Fig. 13  The relationship between tumor risk score and immunotherapy. A-D The correlation between risk score and different immune scores. E The 
prognostic difference between the high and low risk score groups. F-G The difference in risk scores between the remission group (CR/PR) and the 
non-remission group (SD/PD). CR, complete response; PR, partial response; SD, stable disease; PD, progressive disease
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GEO, six lncRNAs were related to the recurrence of OV 
[55]. Therefore, the abnormal expression of specific lncR-
NAs can be used as independent biomarkers for the diag-
nosis and prognosis of OV and effectively predict tumor 
progression.

Screening of the differentially expressed lncRNAs 
in m6A and the lncRNA sets co-expressed with m6A-
related genes, yielded 13 major lncRNAs (TLR8-AS1, 
LINC01215, LINC01579, LINC01354, LINC01234, 
AATBC, BACE1-AS, LINC00467, LINC00662, 
LINC00997, LINC01132, SEC24B-AS1, SH3RF3-AS1) to 
construct the lncRNA risk score model related to prog-
nosis and tumor ICI. TLR8-AS1 enhances the metasta-
sis and chemotherapy resistance of ovarian cancer cells 
in  vivo and in  vitro and high expression is associated 
with poor prognosis [56]. LINC01354 is significantly 
increased in non-small cell lung carcinoma, promotes 
the proliferation and invasion of lung cancer cells, and 
high expression is related to advanced TNM stage and 
poor prognosis [57]. LINC01234 is upregulated in colo-
rectal cancer, gastric cancer, and oral cancer and high 
expression correlates with poor prognosis. It is related to 
tumor stage and lymph node metastasis, and promotes 
cancer cell proliferation, metastasis, and inhibits apop-
tosis [58–60]. BACE1-AS is significantly overexpressed 
in liver cancer, has a tumorigenic effect, and predicts 
poor overall survival and recurrence-free survival[61]. 
LINC00467 is significantly upregulated in non-small cell 
lung cancer, promotes tumor cell growth and metastasis, 
and is related to clinical stage and poor prognosis [62]. 
It also promotes the proliferation, migration, invasion, 
and epithelial-mesenchymal transition (EMT) of breast 
cancer cells, tumor growth and lung metastasis in  vivo, 
and high expression predicts poor OS [63]. In renal clear 
cell carcinoma, higher levels of LINC00997 are associ-
ated with lower OS and disease-free survival [64]. Over-
expression of LINC01132 in OV is significantly related 
to the poor prognosis, and it promotes the proliferation, 
migration, invasion, inhibition of apoptosis, and tumor 
growth in  vivo [65]. Clearly, most of the lncRNAs in 
the risk model are involved in predicting the prognosis 
of different tumors, so it is unsurprising that they were 
included in the model. Indeed, the integration of these 
lncRNAs may have a better synergistic effect in predict-
ing the prognosis of OV and the effect of immunotherapy 
together rather than individually. Consistent with expec-
tations, the risk scores in the training set, test set, and 
overall set showed very accurate prediction capabilities 
(Fig. 7 and 8), and the robustness of the model was fur-
ther verified by the GEO data set (Fig. 9). Together with 
clinicopathological parameters, risk scores had strong 
independent predictive ability, especially for long-term 
survival (Fig. 10).

Many m6A mRNA abnormalities are found in dif-
ferent immune cells in tumors. Compared with wild-
type, in YTHDF1-/- mice, due to the enhanced ability 
of dendritic cells to present tumor neoantigens, the 
antigen-specific anti-tumor response mediated by 
CD8 + T cells is enhanced [66]. The m6A methyla-
tion of METTL3/FTO promotes the generation and 
polarization of M1/M2 macrophages from bone mar-
row-derived macrophages (BMDM) [67, 68]. Den-
dritic cells knocked out of METL3 have a reduced 
ability to stimulate differentiation and activation of 
CD4 + T cells in  vivo [69]. METTL3-/- CD4 + regu-
latory T cells (Tregs) show systemic loss of function 
and are unable to stimulate naive T cell proliferation 
[66]. In order to explore the relationship between 
risk score constructed by m6A-related lncRNAs and 
the tumor immune microenvironment, 28 different 
ICI states were evaluated, and in the high-risk group, 
immune cells such as activated dendritic cells, cen-
tral memory CD8 T cells, macrophages, and MDSCs 
were more abundant (Fig.  12). Immunosuppression 
is an important feature in the tumor microenviron-
ment and is characterized by depleted killer immune 
cells and antigen presenting cells (APC) and suppres-
sive immune cells recruited or induced at a high lev-
els, such as Tregs, tumor-associated macrophages 
(TAMs), immature myeloid cells (iMC)/myeloid-
derived suppressor cells (MDSCs) and a variety of 
cytokines [70]. In the process of tumor progression, 
in the abnormal tumor microenvironment, a variety of 
immune cells that are recruited are remodeled, acti-
vating new functions, and helping tumor cells avoid 
elimination, and promoting further invasion and 
metastasis [71, 72].

Increasingly immunotherapies targeting immune 
checkpoints (ICB, PD-1/L1, CTLA-4, etc.) have sur-
prising effects in long-term responses in a small num-
ber of patients, however, there is little clinical benefit 
in the majority of patients [73]. Tumor progression is a 
complex process, including cytogenetic and epigenetic 
variations[74]. TMB refers to the distribution density 
of non-synonymous mutations in somatic genes, that 
is, the total number of coding errors, base substitu-
tions, gene insertions or deletions per Mb base in the 
exon coding region [75], and can be used as a bio-
marker for immune checkpoint inhibitors and to pre-
dict the effect of immunotherapy [76]. Tumors with a 
higher mutation burden can recruit more new antigens 
to the surface of tumor cells, increase the immuno-
genicity of the tumor, and thus improve the efficacy of 
immunotherapy [77, 78]. As found in this study, when 
comparing the top 30 ovarian cancer driver genes 
with mutations, there are significant differences in the 
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mutation spectrum between high and low immune 
cell infiltration (ICI) subgroups and immune infiltra-
tion (Fig. 11). In gastric cancer, the m6A modification 
is significantly associated with tumor mutation bur-
den/microsatellite instability (TMB/MSI) status[79]. 
After knocking down METL14/YTHDF1, the tran-
scription levels of IFN-α, -β and -γ, which are essen-
tial for tumor cell suppression and anti-tumor immune 
stimulation, are downregulated [79]. Our data show 
that there is a significant negative correlation between 
m6A-related risk score and TMB in OV. Indeed, 
patients with high TMB status have long-term effects 
of anti-PD-1/PD-L1 immunotherapy [76]. Based on 
the IPS score of the TCIA database and the analysis 
of the IMvigor210 dataset of the anti-PD-L1 immu-
notherapy cohort, we found that risk score is related 
to the objective response to anti-PD-L1 therapy, and 
patients in the low-risk group are more likely to ben-
efit from immunotherapy and get a better prognosis 
(Fig. 13). This indicates that the m6A-related lncRNA 
risk score model can accurately predict prognosis and 
immunotherapy.

This study also has limitations. We used differential 
expression and co-expressed lncRNAs of 21 m6A-related 
genes, but new m6A-related genes and new lncRNAs 
and/or more clinical factors would improve the accuracy 
of the assessment. We used retrospective data set analy-
sis to establish a risk score, which consequently requires 
a prospective cohort for verification.

Conclusion
In this study, we found that the expression profile of 
m6A-related genes in OV has individual heterogene-
ity, related to OS, and gene mutations can affect the 
expression of m6A-related genes. In addition, the risk 
score model constructed by the differentially expressed 
and co-expressed lncRNAs related to m6A-related 
genes can better predict the OS of OV tumor samples 
and effectively guide immunotherapy strategies.
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