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Abstract 

Background:  Oral squamous cell carcinoma (OSCC) is a malignant cancer, the survival rate of patients is disappoint-
ing. Therefore, it is necessary to identify the driven-genes and prognostic biomarkers in OSCC.

Methods:  Four Gene Expression Omnibus (GEO) datasets were integratedly analyzed using bioinformatics 
approaches, including identification of differentially expressed genes (DEGs), GO and KEGG analysis, construction of 
protein-protein interaction (PPI) network, selection of hub genes, analysis of prognostic information and genetic alter-
ations of hub genes. ONCOMINE, The Cancer Genome Atlas (TCGA) and Human Protein Atlas databases were used to 
evaluate the expression and prognostic value of hub genes. Tumor immunity was assessed to investigate the func-
tions of hub genes. Finally, Cox regression model was performed to construct a multiple-gene prognostic signature.

Results:  Totally 261 genes were found to be dysregulated. 10 genes were considered to be the hub genes. The 
Kaplan-Meier analysis showed that upregulated SPP1, FN1, CXCL8, BIRC5, PLAUR, and AURKA were related to poor 
outcomes in OSCC patients. FOXM1 and TPX2 were considered as the potential immunotherapeutic targets with 
future clinical significance. Moreover, we constructed a nine-gene signature (TEX101, DSG2, SCG5, ADA, BOC, SCARA5, 
FST, SOCS1, and STC2), which can be utilized to predict prognosis of OSCC patients effectively.

Conclusion:  These findings may provide new clues for exploring the molecular mechanisms and targeted therapy in 
OSCC. The hub genes and risk gene signature are helpful to the personalized treatment and prognostic judgement.
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Background
Oral squamous cell carcinoma (OSCC) is the major type 
of head and neck squamous cell carcinoma (HNSCC) [1]. 
Despite great works have been made on early screen and 
personalized treatment for cancers, OSCC still is a chal-
lengeable disease and has brought seriously economic 
and medical burden [2]. Risk factors, including smok-
ing, drinking, and HPV infections, are closely associated 
with the development of OSCC [3–5]. Nevertheless, the 
mechanisms of OSCC are still unclear. Moreover, most 
OSCC patients can’t be screened early due to the lack of 
available diagnostic markers. In addition, due to the drug 
resistance, some patients with OSCC might suffer from 
cancer recurrence. Thus, identifying the novel biomark-
ers and effective targets is of great importance to OSCC 
research and management.

Recently, the gene chip assays and second-generation 
gene sequencing have been extensively applied in scien-
tific researches [6, 7]. These approaches could effectively 
screen the key genes that influence the cancer develop-
ment or progression [8]. To date, numerous studies have 
used the second-generation gene sequencing or gene 
chip assays to explore the key genes in OSCC [9]. How-
ever, the findings might be inconsistent due to the tumor 
heterogeneity, localization, HPV-related link, and micro-
biota. So far, there are few reliable markers and thera-
peutic targets for OSCC. The integrated bioinformatics 
analysis may solve these problems and eventually find 
more convincing results since it uses several bioinformat-
ics methods and integrates the data from different gene 
profiles [10].

In this study, we utilized microarray data of OSCC tis-
sues and normal oral tissues in GEO and TCGA data-
bases to screen the hub genes and biomarkers. We 
purposed to screen the hub genes, important GO terms, 
and significant pathways in the OSCC progression, thus 
helping to reveal the mechanisms of this disease. We also 
hope to pick out the risk genes and construct a multiple-
gene prognostic signature, which can be implemented for 
prognostic judgment in OSCC.

Material and methods
Data collection and procession
To acquire the OSCC mRNA expression datasets, the 
keywords: “Expression profiling by array” “Homo sapi-
ens”, and “Oral squamous cell carcinoma”, were searched 
in GEO database (http://​www.​ncbi.​nlm.​nih.​gov/​geo/) 
[11, 12]. After a systematic review, OSCC and non-tumor 
oral tissues gene expression profiles of GSE23558 [13], 
GSE30784 [14], GSE74530 [15], and GSE37991 [16] were 
selected and downloaded through getGEO function in 
“GEOquery” package [17]. The criteria for selecting the 
datasets as following: (1) dataset contains both OSCC 

tissues and non-tumor tissues; (2) samples size was 10 
or more. The data were pre-processed as the previous 
studies [18, 19]. Briefly, the raw data of gene chips were 
normalized by “limma” package in R software (Version: 
3.6.3). Moreover, the “sva” package was utilized to remove 
the batch effect. The detail information of the four GEO 
datasets was presented in Table 1. The RNA-seq data and 
clinicopathological data of 502 OSCC patients and 44 
normal samples were also downloaded from The Cancer 
Genome Atlas (TCGA, https://​cance​rgeno​me.​nih.​gov/) 
database. Data procession of TCGA database was per-
formed as the previous studies [20, 21].

Identification of DEGs
The limma package was utilized to screen the DEGs 
between OSCC and normal tissues in GEO datasets and 
TCGA dataset [22]. For selecting the DEGs in each GEO 
dataset, |logFC| >1 and adjust P-value <0.05 were set as 
the cut-off criteria [5]. Then, the overlapping DEGs was 
screened using a Venn tool (http://​bioin​fogp.​cnb.​csic.​es/​
tools/​venny/). The data profile of GSE37991 was used as 
a reference to construct the heatmap and to present the 
distribution of DEGs.

Functional enrichment analysis for DEGs
GO and KEGG analysis of overlapping DEGs were con-
ducted via the DAVID database (https://​david.​ncifc​rf.​
gov/), and FunRich tool (FunRich 3.0) as descried previ-
ously [12, 23–25]. We submitted the overlapping DEGs 
into the above databases or software. The top five GO 
terms for biological process (BP), cellular component 
(CC), and molecular function (MF) were illustrated as 
bar charts [12]. The KEGG results were visualized by 
“clusterProfiler” package, the top 10 KEGG pathways 
of upregulated DEGs and downregulated DEGs were 
showed as bubble charts, respectively [26].

Construction of protein‑protein interaction (PPI) network
PPI networks are formed by proteins due to the exist-
ence of biochemical or electrostatic forces [27]. Here, 
the Search Tool for the Retrieval of Interacting Genes 
(STRING 11.0) database (https://​string-​db.​org/​cgi/​
input.​pl) was applied to establish PPI networks [12, 
27]. Cytoscape software (v3.6.1) was used to illustrate 
the PPI networks and the cut-off criteria were set as 
Table 1  The detail information of four GEO datasets

GEO Gene Expression Omnibus, OSCC Oral squamous cell carcinoma

ID Tissues Platform Normal(cases) Tumor(cases)

GSE23558 OSCC GPL6480 4 27

GSE30784 OSCC GPL570 45 167

GSE74530 OSCC GPL570 6 6

GSE37991 OSCC GPL6883 40 40

http://www.ncbi.nlm.nih.gov/geo/
https://cancergenome.nih.gov/
http://bioinfogp.cnb.csic.es/tools/venny/
http://bioinfogp.cnb.csic.es/tools/venny/
https://david.ncifcrf.gov/
https://david.ncifcrf.gov/
https://string-db.org/cgi/input.pl
https://string-db.org/cgi/input.pl
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confidence score ≥ 0.4, maximum number of interac-
tors = 0 [12, 28]. Gene clusters visualization are con-
ducted as our previous studies [12, 28]. Gene clusters 
were screened with the following criteria: MCODE 
scores >10 and number of nodes >10 [12]. 10 genes were 
considered to be the hub genes according to connectiv-
ity degree [12, 28, 29].

Hub genes validation
As for hub genes validation, we assessed the lev-
els both in mRNA level and protein level. Specifi-
cally, ONCOMINE (https://​www.​oncom​ine.​org) 
database was utilized to evaluate the mRNA expres-
sion of selected hub genes [30]. The gene rank means 
that the median rank of one searched gene across 
the selected analyses [31]. We also used GEPIA 
database(http://​gepia.​cancer-​pku.​cn/​index.​html) to 
validate the mRNA levels of hub genes [12, 32]. The 
Human Protein Atlas database collected more than 
11,200 unique proteins [33], we thus used it to evalu-
ate the protein levels of hub genes in OSCC tissues and 
normal control tissues.

Genetic alterations and survival analysis
The cBio Cancer Genomics Portal (http://​www.​cbiop​
ortal.​org/) is an online database which enables us to com-
pare the genetic alterations of the hub genes in OSCC 
[34]. Subsequently, survival analysis was performed in 
the Kaplan Meier-plotter website (http://​kmplot.​com/​
analy​sis/​index.​php), which could assess the effect of 
54,675 genes on survival using 18,674 cancer samples 
from GEO, European Genome-phenome Archive (EGA) 
and TCGA database [35].

Analysis of potential target genes
TIMER website (https://​cistr​ome.​shiny​apps.​io/​timer/) 
was applied to investigate the expression levels of the 
selected target genes in different human tumors [36]. The 
UALCAN website (http://​ualcan.​path.​uab.​edu/​analy​sis.​
html) was utilized to assess the factors which are asso-
ciated with the expression levels of the target genes in 
OSCC [37].

Correlation analysis of genes expression and immune cell 
infiltration and immune checkpoints
TIMER website was applied to analyze the genes expres-
sion data for FOXM1 and TPX2 in TCGA OSCC sam-
ples and its correlation with tumor infiltration of six 
immune cell types (B cells, CD4+T cells, CD8+ T cells, 
neutrophils, macrophages, and dendritic cells) and five 
immunological checkpoints (CD274, CTLA4, PDCD1, 
PDCD1LG2, and TOX) [36].

Construction of prognostic gene signature
Univariate and multivariate Cox regression analyses were 
conducted to investigate the relationships between the 
expression of 261 overlapping DEGs and OSCC patients’ 
survival in TCGA dataset. Nine DEGs were identified 
as the prognostic indicators in OSCC. These nine DEGs 
were utilized to construct a prognostic signature as pre-
vious study [38]. Each OSCC patient received a risk score 
according to the formula: risk score = (Coefficient gene 
1 × Expression gene 1) + (Coefficient gene 2 × Expres-
sion gene 2) +…+ (Expression gene n × Coefficient gene 
n). Finally, the Kaplan-Meier curve and receiver operat-
ing characteristic (ROC) curve were used to evaluate the 
efficiency of the gene signature.

Identification of the independent prognostic indicators 
in OSCC
Univariate and multivariate Cox regression analyses were 
conducted to identify the independent prognostic indica-
tors (including age, gender, grade, stage, T, M, N, and risk 
score) for OSCC patients.

Statistical analysis
The R statistical package (R version 3.6.3) and Perl lan-
guage and were utilized to conduct the statistical tests 
and graphics unless otherwise stated. P <0.05 was 
regarded as statistical significance.

Results
DEGs involved in OSCC
The four datasets (GSE23558, GSE30784, GSE74530, and 
GSE37991), including 240 OSCC tissues and 95 non-
tumor tissues, were included in this study. We extracted 
3383, 2532, 2106, and 2527 DEGs from GSE23588, 
GSE30784, GSE37991, and GSE74530, respectively 
(Fig. 1a-d). Totally 261 overlapping DEGs were screened 
from the 4 datasets (Fig.  1e; Table  2), including 135 
upregulated DEGs and 126 downregulated DEGs. The 
data profile of GSE37991 was used as a reference to con-
struct the heatmap and to show the differential distribu-
tion of DEGs (Fig. 1f ).

Functional enrichment analysis
Functional enrichment analysis was analyzed by DAVID 
database and FunRich tool (FunRich 3.0). As shown in 
Figure S1a, in BP group, upregulated DEGs were mainly 
involved in energy pathways, metabolism, and lipid stor-
age, whereas the downregulated DEGs were related to 
signal transduction, cell communication, and immune 
response (Figure S1b). For CC group, upregulated DEGs 
were mainly associated with exosomes, extracellular 
space, and endoplasmic reticulum membrane, whereas 
downregulated DEGs were involved in extracellular, 

https://www.oncomine.org
http://gepia.cancer-pku.cn/index.html
http://www.cbioportal.org/
http://www.cbioportal.org/
http://kmplot.com/analysis/index.php
http://kmplot.com/analysis/index.php
https://cistrome.shinyapps.io/timer/
http://ualcan.path.uab.edu/analysis.html
http://ualcan.path.uab.edu/analysis.html
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extracellular region, and extracellular space. As for MF, 
upregulated DEGs were correlated to fucosyltransferase 
activity, catalytic activity, and cytokine activity. The 
downregulated DEGs were significantly connected with 
to extracellular matrix structural constituent, metallo-
peptidase activity, and cytokine activity. According to the 
GO results, subsequent studies on OSCC should focus on 
how to balance the cellular microenvironment or reshape 
the cellular physiological functions of cancer cells.

KEGG enrichment showed that upregulated DEGs 
were mainly involved in pathway in cancer, PI3K-Akt 
pathway, ECM receptor interaction, and focal adhesion 
(Figure S1c). Previous studies have showed that molecular 

pathways involved in OSCC are complex [39]. The PI3K-
Akt and Wnt/β-catenin signaling were demonstrated to 
be the three major interlinked pathways involved in the 
molecular pathogenesis of OSCC [39]. Here, we found 
that pathway in cancer and PI3K-Akt pathway were asso-
ciated with the upregulated DEGs. Therefore, monitoring 
these signaling pathways may aid to decide appropriate 
therapeutic approaches in OSCC patients. The down-
regulated DEGs were enriched metabolic pathway, sero-
tonergic synapse, tyrosine metabolism, and arachidonic 
acid metabolism (Figure S1d). Studies have showed that 
metabolic alterations might provide energy and nutrients 
for sustaining the cancer proliferation and growth [40]. 

Fig. 1  Identification of 261 DEGs from the four profile datasets. a Volcano plot of the GSE23558; b Volcano plot of the GSE30784; c Volcano plot 
of the GSE37991; d Volcano plot of the GSE74530 (red color dots represent the upregulated genes; green color dots represent the downregulated 
genes); e Venn diagram was utilized to screen the overlapping DEGs in four datasets. f The data profile of GSE37991 was used as a reference to 
construct the heatmap and to show the differential distribution of DEGs. DEGs, differentially expressed genes; logFC, log‑fold change
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In this study, downregulated DEGs were closely related 
to metabolic pathway, tyrosine metabolism, and arachi-
donic acid metabolism. Therefore, these metabolism-
targeted pathways may help us to improve the treatments 
efficiency.

PPI network analysis
Totally 261 overlapping DEGs were mapped into PPI 
network via STRING database and Cytoscape software, 
(Fig. 2a). The top two important clusters were picked out 
by MCODE plug-in in Cytoscape software (Cluster 1, 

MCODE score =15.2; Cluster 2, MCODE score = 9.789) 
(Fig. 2b-c). Cluster 1 consists of 16 nodes and 144 edges 
(Table S1), which are mainly related to cell cycle, DNA 
replication, and cellular senescence. Cluster 2 consists 
of 20 nodes and 93 edges (Table S2), which are mainly 
enriched in IL-17 signaling pathway, influenza A, and 
complement and coagulation cascades. Using cyto-
Hubba software, 10 genes (FN1, CXCL8, CXCL10, SPP1, 
FOXM1, AURKA, ISG15, PLAUR, TPX2, and BIRC5) 
were selected as hub genes according to the connectiv-
ity degree (Table  3). According to Figure S2a, the hub 
genes could interact with each other and they might be 
the driven-genes in OSCC development and progres-
sion. KEGG pathways analysis showed that the signifi-
cantly enriched terms for the hub genes were RIG-I-like 
receptor signaling pathway, Toll-like receptor signal-
ing pathway, IL-17 signaling pathway, Influenza A, Cel-
lular senescence, Chemokine signaling pathway, and 
Cytokine-cytokine receptor interaction (Figure S2b).

Validation the expression of hub genes
ONCOMINE, TCGA, and The Human Protein Atlas data-
bases were used to validate the expression of hub genes. 
Firstly, ONCOMINE was used to perform a meta‑analysis 
to compare the mRNA levels of FN1, CXCL8, CXCL10, 
SPP1, FOXM1, AURKA, ISG15, PLAUR, TPX2, and 
BIRC5 between OSCC and non-tumor oral tissues. As 
showed in Figure S3, the mRNA expression levels of FN1 
(Figure S3a), CXCL8 (Figure S3b), CXCL10 (Figure S3c), 
SPP1 (Figure S3d), FOXM1 (Figure S3e), AURKA (Figure 
S3f), ISG15 (Figure S3g), PLAUR (Figure S3h), TPX2 (Fig-
ure S3i), and BIRC5 (Figure S3j) were significantly upreg-
ulated in OSCC tissues compared to those in normal oral 
tissues (P < 0.05). In addition, the median rank of FOXM1 
was the highest among the top 10 hub genes in OSCC tis-
sues (Figure S3e). The findings from GEPIA database also 
demonstrated that the 10 hub genes were significantly 
higher in OSCC tissues than those of non-tumor tissues 
(Fig. 3a). These results were consistent with the observed 
in GEO datasets. Due to the lack of CXCL8, CXCL10, 
FOXM1 and PLAUR information in The Human Pro-
tein Atlas dataset, their protein expression level was not 
analyzed (Fig. 3b). The results indicated that the protein 
expressions of AURKA, BIRC5, FN1, ISG15, SPP1 and 
TPX2 were overexpressed in OSCC compared with the 
control samples (Fig. 3b).

Genetic alterations and survival analysis of hub genes
Kaplan Meier-plotter website was applied to evaluate 
the prognostic potential of the 10 hub genes. The results 
demonstrated that high levels of SPP1 (HR=1.45(1.09-
1.92), P=0.01), FN1 (HR=1.49(1.14-1.96), P=0.0038), 

Table 2  261 overlapping DEGs in OSCC of four gene expression 
profiles

DEGs differentially expressed genes, OSCC Oral squamous cell carcinoma

DEGs Gene names

Upregulated DEGs BAX, NEK6, SSH1, SLC3A2, EPHB2, TNFRSF10B, 
STX2, IKBIP, IGF1R, ADA, MARCKSL1, PDLIM7, 
BIRC5, COL4A5, CARD10, CTSC, MCM2, 
BNC1, ABL2, ARPC1B, HLA-F, TGIF1, FBLIM1, 
COLGALT1, CDCA8, GNA12, HAPLN3, BMP1, 
TRIO, DNMT3B, SOCS1, NRP2, PTK7, COL4A1, 
HOMER3, PDE7A, SLC28A3, ANGPT2, SERPINH1, 
NLRC5, FXYD5, MB21D1, MCM4, LHFPL2, 
ADAM12, TK1, DCBLD1, PLAUR, SPRY4, 
COL12A1, PML, EXO1, APOL1, HAS3, CDCA3, 
AGRN, RTKN, TEAD4, CHEK1, ITGA5, TMEM132A, 
CD276, HSD17B6, STC2, LTBP1, SHCBP1, SCD5, 
UBE2L6, SNX10, LAMA3, CXCL5, SP110, TPX2, 
FOXD1, LPAR3, HOXD10, CD274, TENM2, 
ITGB4, FOXM1, DSG2, AURKA, OAS2, MELK, 
E2F7, CDC6, KIF23, NRG1, FEZ1, CTSL, PLEK2, 
CDH3, AIM2, TRIP13, COL4A6, ADTRP, PCDH7, 
BST2, OASL, LAMC2, IL11, FN1, SOX11, PLAU, 
ITGA3, EPSTI1, SERPINE1, WDR66, TNFRSF12A, 
PDPN, IFIT3, LY6K, IFI6, GALNT6, ISG15, IL1RL1, 
CXCL8, HMGA2, CXCL9, RSAD2, SCG5, CYP27B1, 
GBP5, ZNF114, IL24, FST, PTHLH, NELL2, INHBA, 
SLCO1B3, SPP1, CXCL10, MMP1, MMP10, MMP3

Downregulated DEGs TMPRSS11B, MAL, CRNN, FAM3B, TYRP1, ALOX12, 
KRT4, AADAC, CLDN17, CTTNBP2, PPP1R3C, 
KRT13, ENDOU, OGN, HLF, COBL, CILP CLCA4 
SH3GL3, MFAP4, ALDH3A1, ABCA8, CYP4B1, 
FUT6, ATP13A4, FAM3D, SH3BGRL2, SCNN1B, 
ANKRD6, RRAGD, GATM, HOPX, KLB, ASPA, 
CYP2C18, MUC15, OCLN, PTN, LAMB4, C2orf54 
WNK4, CXCR2, ANGPTL1, ACPP, PBX1, SCARA5, 
UPK1A, TSPAN8, GALNT5, SLC6A4, BEX4, 
ATP6V0A4, CYP2C9, GULP1, CXCL17, SUSD4, 
SYTL4, MLPH, APOD, MAOB, MIR99AHG, DPT, 
NEBL, SLURP1, ECHDC3, TEX101, SAMD5, RBP7, 
FAM189A2, FAM221A, GALNT12, GYS2, LRRK2, 
AR, SYNGR1, SFTA2, MYZAP, GGTA1P, C15orf59, 
GAS7, DEPTOR, CYP4F12, FUT3, KIAA1211L, 
BOC, PAX9, MAMDC2, PPARGC1A, CEACAM1, 
RNASE4, CYP2J2, TGFBR3, CXCL13, RALGPS1, 
GKAP1, EPHX2, DCT, SLC16A7, IL1RN, PSCA, 
BCAS1, SPATA18, CFD, PLAGL1, CD207, SORBS1, 
MGLL, SPAG16, GREM2, GSTM5, SLC4A4, SCIN, 
CAB39L, CYSLTR1, ACADSB, SHROOM3, PLIN1, 
GGT6, PAQR8, GPD1L, PGD, PANK1, ATP6V1C2, 
ITM2C, ABCA5, ZNF273
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CXCL8 (HR=1.52(1.13-2.04), P=0.0048), BIRC5 
(HR=1.33(1.01-1.76), P=0.043), PLAUR (HR=1.39(1.06-
1.82), P=0.016), and AURKA (HR=1.44(1.05-18.2), 
P=0.022) were associated with poor OS in OSCC patients 
(Fig. 4). The remaining four genes present similar trends, 
but not statistically significant. Moreover, the genetic 

alterations were enquired by cBioPortal. Figure 5a and b 
showed the alteration state of 10 genes. These 10 genes 
were changed in 217 (44%) of 496 sequenced patients 
(496 total), and that FOXM1 and TPX2 were changed 
most often (15% and 14%), including amplification, mis-
sense mutation, and deep deletion. Figure  5c illustrated 

Fig. 2  Construction and analysis of PPI network of DEGs. a PPI was established by the 261 overlapping DEGs using STRING database; b Cluster 1; c 
Cluster 2; Upregulated DEGs (red) or downregulated DEGs (blue) is indicated. PPI, protein-protein interaction; DEGs, differentially expressed genes; 
STRING, search tool for the retrieval of interacting genes

Table 3  Top 10 hub genes with higher degree of connectivity

DEGs differentially expressed genes, OSCC Oral squamous cell carcinoma

Genes Gene description Degree of connectivity Betweenness

FN1 Fibronectin 1 51 14204.03675

CXCL8 C-X-C motif chemokine ligand 8 32 4144.65638

CXCL10 C-X-C motif chemokine ligand 10 28 3898.53933

SPP1 Secreted phosphoprotein 1 21 2115.86473

FOXM1 Forkhead box M1 20 1391.36367

AURKA Aurora kinase A 20 2706.35927

ISG15 ISG15 ubiquitin like modifier 19 1081.35875

PLAUR​ Plasminogen activator, urokinase receptor 19 3931.73348

TPX2 TPX2 microtubule nucleation factor 18 266.62393

BIRC5 Baculoviral IAP repeat containing 5 18 1221.29117
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the network established by the 10 hub genes and their 47 
neighbor genes. Besides, drugs targeting the hub genes 
were presented. According to Fig.  5c, only AURKA, 
BIRC5, and PLAUR were utilized as chemotherapy tar-
gets for cancer treatment presently. Therefore, we sup-
posed that the other seven genes (FN1, CXCL8, CXCL10, 
SPP1, FOXM1, ISG15, and TPX2) might be the novel tar-
gets for OSCC treatment.

Biological functions of FOXM1 and TPX2 in tumors
As FOXM1 and TPX2 were changed most often in OSCC, 
we thus chose FOXM1 and TPX2 as the target genes to 
conduct the following studies. Firstly, TIMER website was 

used to explore the expression levels of FOXM1 in sev-
eral tumors and corresponding normal tissues. FOXM1 
is upregulated in a variety of tumors, including BLCA, 
BRCA, CHOL, COAD, ESCA, HNSC, KICH, KIRC, KIRP, 
LIHC, LUAD, LUSC, PPAD, READ, STAD, THCA, and 
UCEC (Fig. 6a). This suggests that FOXM1 may also play 
an oncogenic role in other tumors. Moreover, by using 
the UALCAN website, we found that FOXM1 is highly 
expressed in OSCC tissues (Fig.  6b). FOXM1 has differ-
ential expression in patients with different tumor stages 
(Fig. 6c), genders (Fig. 6d), races (Fig. 6e), and molecular 
subtypes (Fig. 6f ). Similarly, TPX2 is upregulated in a vari-
ety of human tumors, including BLCA, BRCA, CHOL, 

Fig. 3  Validation of hub genes in TCGA database and Human Protein Atlas database. a Box plots show the mRNA levels of the 10 hub genes (FN1, 
CXCL8, CXCL10, SPP1, FOXM1, AURKA, ISG15, PLAUR, TPX2, and BIRC5) in HNSCC/OSCC tissues and normal oral tissues using data from the TCGA 
database in GEPIA (http://​gepia.​cancer-​pku.​cn/​index.​html). The validation results were consistent with these observed in GEO datasets. *P < 0.05 
was considered statistically significant. b Representative immunohistochemistry images of AURKA, BIRC5, FN1, ISG15, SPP1, TPX2 in OSCC and 
normal oral tissues derived from the Human Protein Atlas database; OSCC, Oral squamous cell carcinoma; HNSCC, Head and neck squamous cell 
carcinoma; TCGA, The Cancer Genome Atlas

http://gepia.cancer-pku.cn/index.html


Page 8 of 17Yang et al. Hereditas          (2021) 158:15 

COAD, ESCA, HNSC, KICH, KIRC, KIRP, LIHC, LUAD, 
LUSC, PPAD, READ, STAD, THCA, and UCEC (Fig. 7a). 
We also found that TPX2 is highly expressed in OSCC tis-
sues via the UALCAN website (Fig. 7b). In addition, TPX2 
has differential expression in patients with different tumor 
stages (Fig.  7c), genders (Fig.  7d), races (Fig.  7e), and 
molecular subtypes (Fig. 7f ).

FOXM1 and TPX2 act as the immune‑associated genes 
in OSCC
The TIMER website was applied to analyze the relationship 
between FOXM1, TPX2, and immune cell infiltration. The 
results showed that both FOXM1 and TPX2 are involved 
in the infiltration of B cells, CD4+ T cells, CD8+ T cells, 
Macrophage cells and Neutrophils cells in OSCC (Fig. 8a, 
c). Moreover, we further analyzed the co-expression rela-
tionship of FOXM1, TPX2, and immune checkpoint-
related genes CD274, CTLA4, PDCD1, PDCD1LG2, and 
TOX. Interesting, we found that FOXM1 was markedly 
correlated with PDCD1, PDCD1LG2, CD274, TOX, and 

CTLA4 (Fig. 8b). And TPX2 has a significant co-expression 
relationship with PDCD1LG2, CD274, and TOX (Fig. 8d). 
These findings suggest that FOXM1 and TPX2 may act as 
the immune-related therapeutic targets in OSCC.

Construction of the risk gene signature for OSCC patients
To construct a promising risk gene signature using the 
261 overlapping DEGs in OSCC, univariate analysis was 
performed to identify the DEGs related to the progno-
sis of OSCC patients using the TCGA dataset. Totally 
42 overlapping DEGs was markedly associated with the 
prognosis of OSCC patients (Table S3). A stepwise mul-
tivariate Cox regression was then conducted to construct 
the risk gene signature. Nine candidate genes (TEX101, 
DSG2, SCG5, ADA, BOC, SCARA5, FST, SOCS1, and 
STC2) were identified as the significant prognostic indi-
cators for OSCC patients (Table S4). Each OSCC patient 
was assigned a risk score calculated as follows: risk score 
= (-0.32654 × expression value of TEX101) + (0.10257 
× expression value of DSG2) + (0.15022 × expression 

Fig. 4  OS of the 10 hub genes in OSCC patients was analyzed via Kaplan‑Meier plotter. Prognostic values of (a) SPP1, (b) FN1, (c) CXCL8, (d) BIRC5, 
(e) PLAUR, and (f) AURKA were obtained in the Kaplan Meier-plotter website (http://​kmplot.​com/​analy​sis/​index.​php). Data are shown as the hazard 
ratio with 95% confidence interval. The red plots present the high expression of each patients while the black plots present the low expression of 
each patients. OSCC, Oral squamous cell carcinoma; OS, Overall survival

http://kmplot.com/analysis/index.php
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value of SCG5) + (0.18621 × expression value of ADA) 
+ (-0.29365 × expression value of BOC) + (-0.26023 × 
expression value of SCARA5) + (0.10796 × expression 
value of FST) + (-0.26676 × expression value of SOCS1) 
+ (0.15679 × expression value of STC2).

The OSCC patients were divided into high-risk and 
low-risk group according to the median value of risk 
score (Fig.  9a-c). Figure  9a-b shows that the survival 
time of OSCC patients decreases along with the rising of 
risk score. As shown in Fig. 9d, the Kaplan-Meier curves 
shows that OSCC patients with lower risk score present 
a longer survival time than those with high risk score 
(P=1.059e-09). Figure 9e shows that the risk score curve 
presents a good feasibility in predicting the patients’ sur-
vival with AUC of 0.685.

The risk score, stage and N were independent prognostic 
indicators in OSCC
As shown in Fig. 10a, the risk score was significantly asso-
ciated with the poorer OS in OSCC (HR=1.871, 95% CI: 

1.455-2.405, P < 0.001). Moreover, stage (HR=1.895, 95% 
CI: 1.287-2.790, P < 0.01), N (lymph nodes) (HR=1.398, 
95% CI: 1.152-1.697, P < 0.001), and T (primary tumor) 
(HR=1.389, 95% CI: 1.082-1.783, P < 0.01) were also related 
to the OS. Then, all these factors were entered into mul-
tivariate Cox analysis. The risk score (HR=2.048, 95% CI: 
1.546-2.711, P < 0.001), stage (HR=1.706, 95% CI: 1.040-
2.799, P < 0.05), and N (HR=1.368, 95% CI: 1.086-1.726, P 
< 0.01) were still identified as the independent prognostic 
indicators for worse OS in OSCC patients (Fig. 10b).

Discussion
Nowadays, the incidence rate of OSCC is still increasing 
quickly [41]. It is estimated that over 354,864 new cases 
and 177,384 deaths occurred in 2018 [41]. Compared with 
the other researches that only explored a single cohort or 
several genes, our study used several databases to integrat-
edly investigate the key genes, pathways, biomarkers and 
risk gene signature in OSCC development. In this study, 
totally 261 overlapping DEGs (135 upregulated DEGs and 

Fig. 5  Genetic alterations and therapeutic potential of hub genes. a An overview of genetic changes of 10 hub genes in TCGA; b A visual summary 
across a set of OSCC shows the genetic alterations connected with the 10 hub genes which were altered in 217(44%) of 496 sequenced cases/
patients (496 total); c The network includes 57 nodes (10 hub genes and their 47 neighbor genes). The drugs for these 10 hub genes are also 
presented. OSCC, Oral squamous cell carcinoma; TCGA, The Cancer Genome Atlas
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126 downregulated DEGs) were identified. KEGG pathway 
enrichment analysis shows that pathway in cancer, PI3K-Akt 
signaling pathway, ECM-receptor interaction, focal adhe-
sion, metabolic pathways, serotonergic synapse, and tyros-
ine metabolism might involve in the OSCC progression. 
The PPI network contains 260 nodes and 655 edges. Then, 
two important clusters were picked out, and these two clus-
ter are mainly enriched in cell cycle, DNA replication, cellu-
lar senescence, IL-17 signaling pathway, and influenza A. 10 

genes were identified as hub genes conforming to the degree 
of connectivity. We then validated the levels of hub genes in 
ONCOMINE, TCGA and The Human Protein Atlas data-
base. Six genes (SPP1, FN1, CXCL8, BIRC5, PLAUR, and 
AURKA) were markedly elevated in OSCC and related with 
poor prognosis. Additionally, genetic analysis demonstrated 
that hub genes were changed in about 44% OSCC patients 
and these genetic alternations include amplification, mis-
sense mutation and so on.

Fig. 6  Biological function of FOXM1 in tumors. a Expression of FOXM1 in various tumors. b Expression of FOXM1 in OSCC tissues and normal 
controls. c Expression of FOXM1 in OSCC based on tumor stages. d Expression of FOXM1 in OSCC based on genders. e Expression of FOXM1 in 
OSCC based on races. f Expression of FOXM1 in OSCC based on molecular subtypes of OSCC. ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001. OSCC, Oral 
squamous cell carcinoma; FOXM1, Forkhead box protein M1
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Importantly, we also focused on finding the therapeu-
tic targets in OSCC. As shown in Fig. 5c, only AURKA, 
BIRC5, and PLAUR were served as the chemotherapy 
targets for cancer treatment currently. Therefore, more 
investigations and clinical trials are required to explore 
whether the other seven genes (FN1, CXCL8, CXCL10, 
SPP1, FOXM1, ISG15, and TPX2) could serve as novel 
therapeutic targets for OSCC patients. According to 
the results in TIMER website, FOXM1 and TPX2 were 

regarded as the potential immunotherapeutic targets 
with future clinical significance. Thus, our analysis may 
provide valuable clues for the targeted therapy in OSCC.

From construction of the risk gene signature, we 
found that the nine-gene based risk model could effec-
tively discriminate the OSCC patients with different 
outcome(P=1.059e-09), and it presents a good perfor-
mance in prognosis judgement. In addition, the Cox 
regression analysis further demonstrated that the risk 

Fig. 7  Biological function of TPX2 in tumors. a Expression of TPX2 in various tumors. b Expression of TPX2 in OSCC tissues and normal controls. c 
Expression of TPX2 in OSCC based on tumor stages. d Expression of TPX2 in OSCC based on genders. e Expression of TPX2 in OSCC based on races. f 
Expression of TPX2 in OSCC based on molecular subtypes of OSCC. ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001. OSCC, Oral squamous cell carcinoma; TPX2, 
Targeting protein for xenopus kinesin-like protein 2
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score based on the gene signature is an independent 
prognostic indicator with the highest HR value than 
other factors.

Driven-genes play a crucial role in cancer progression 
through complex pathways and networks. Similar to the 
findings of our study, it has been reported that secreted 
phosphoprotein 1 (SPP1) is a cancer-related gene, which 
presents clearly upregulated level in many cancers [42–
44]. Additionally, SPP1 also plays a significant role in 
extracellular matrix binding [45]. Consistently, SPP1 
was enriched in ECM receptor interaction according to 
KEGG pathway analysis, which plays crucial role in can-
cer metastasis [46]. Huang et al found that overexpressed 

SPP1 was linked to carcinogenesis and progression of 
OSCC [44]. Besides, Fibronectin 1(FN1), predominantly 
overexpressed in many tumor tissues [47, 48], was also 
involved in this pathway. Cai et al confirmed that down-
regulated FN1 could inhibit colorectal carcinogenesis 
through suppressing proliferation, migration, and inva-
sion [49]. Therefore, SPP1 and FN1 might be potential 
therapeutic targets for inhibiting OSCC metastasis.

Chemokine (C-X-C motif ) ligand 8 (CXCL8) and 
CXCL10 belong to the chemokine family [50]. Since 
CXCL8 and CXCL10 integrates with multiple intracel-
lular signaling pathways associated with pro-inflamma-
tory and pro-oncogenic processes, upregulated CXCL8 

Fig. 8  Tumor immune correlation analysis. a Relationship between FOXM1 expression and immune cells. b Relationship between FOXM1 
expression and immune checkpoints; c Relationship between TPX2 expression and immune cells. d Relationship between TPX2 expression and 
immune checkpoints. FOXM1, Forkhead box protein M1; TPX2, Targeting protein for xenopus kinesin-like protein 2
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and CXCL10 are related to carcinogenesis and might 
predict prognosis of patients [51, 52]. For example, the 
level of CXCL8 was upregulated in endothelial cells co-
cultured with HNSCC, showing that CXCL8 might play 
a pro-oncogenic role in the pathobiology of tumor cells 
[53]. Moreover, CXCL8 and CXCL10 are two important 
modulators in immune response, and they might provide 
new opportunities for improving immune therapies and 

enhancing the effectiveness of existing chemotherapies 
[52, 54].

Plasminogen activator urokinase receptor (PLAUR) 
is one of glycosyl-phosphatidylinositol (GPI)-anchored 
membrane proteins [55]. Downregulation of PLAUR 
could inhibit cancer proliferation and metastasis in sev-
eral cancers [56]. Consistently, our results showed that 
PLAUR was considered as a cancer therapeutic target 

Fig. 9  Construction of prognostic model for OSCC patents. a The distribution of risk scores of OSCC patients in prognostic model. b The distribution 
of OSCC patients with different survival status. c The heatmap of nine risk genes (TEX101, DSG2, SCG5, ADA, BOC, SCARA5, FST, SOCS1, and STC2) 
in OSCC patients in high-risk and low-risk group. d Kaplan-Meier curves of OSCC patients in high-risk and low-risk group. e The ROC curve for 
evaluating the performance of the prognostic model

Fig. 10  Independent prognostic indicators in OSCC. a Univariate Cox regression analysis of the clinicopathological characteristics and risk score in 
OSCC; b Multivariate Cox regression analysis of the clinicopathological factors and risk score in OSCC
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and high expression of PLAUR can predicted poor OS 
in OSCC patients. Forkhead box protein M1 (FOXM1) 
is widely participated in the carcinogenesis of several 
malignances [57]. For example, FOXM1-induced epige-
netic signature may serve as ideal biomarkers for early 
cancer screening in head and neck carcinoma [58]. 
FOXM1 may also act as a therapeutic target against head 
and neck carcinoma [59, 60]. Recent study showed that 
upregulated basal FOXM1 activity predisposes HPV pos-
itive HNSCC to WEE1i-induced toxicity [61]. Consist-
ently, we found that FOXM1 is differentially expressed in 
OSCC patient with different tumor stages, genders, races, 
and molecular subtypes. Moreover, we were surprised to 
find that FOXM1 may act as an immune-related thera-
peutic targets according to the TIMER website. FOXM1 
was markedly correlated with PDCD1 (Fig 8b). However, 
little research has been conducted in this field. Previous 
study showed that FOXM1 could maintain the dynamic 
balance between cell apoptosis and proliferation through 
regulating the essential genes [62]. Thus, FOXM1 may 
also participate in the PDCD1-regulated cell death. 
Moreover, the association of FOXM1 with immune cell 
infiltration may enhance our understanding of the cor-
relationship between FOXM1 and PDCD1[63]. The func-
tions of regulatory T cells (Tregs) in immune regulation 
is well known, and much is being made of their poten-
tial for PDCD1 based therapy [64]. Recently, research-
ers found that the expression of FOXM1 was positive 
correlated with FOXP3 (the specific molecular marker 
of Tregs) and FOXM1 may induce immune suppression 
via recruiting FOXP3 positive Tregs in cancer therapy 
[65]. These results highlight the therapeutic potential 
of FOXM1 in OSCC. Previously, Li et al also found that 
there was a direct link between PLAUR and FOXM1 [66]. 
Their results showed that FOXM1 can regulate the level 
of PLAUR via binding to its promoter. Moreover, the 
FOXM1-PLAUR axis contributed to colon carcinomas 
[66]. We therefore supposed that FOXM1-PLAUR sign-
aling might also be promising for designing novel thera-
peutic drugs for OSCC.

Targeting protein for xenopus kinesin-like protein 2 
(TPX2) is involved in the mitotic spindle assembly and cell-
cycle progression [67]. Recent studies reported that TPX2 
dysregulation was related to the progression of esophageal 
cancer [68], hepatocellular carcinoma [69], and colorec-
tal cancer [70]. Consistently, increased expression of TPX2 
was also observed in OSCC tissues in this study. Moreo-
ver, TPX2 is differentially expressed in patients with differ-
ent tumor stages, genders, races, and molecular subtypes 
according to UALCAN website. We also analyzed role of 
TPX2 in tumor immunity and found that TPX2 is involved 
in the infiltration of B cells, CD4+ T cells, CD8+ T cells, 

Macrophage cells and Neutrophils cells in OSCC. Impor-
tantly, TPX2 has a significant co-expression relationship 
with CD274, PDCD1LG2, and TOX. Since TOX is a signifi-
cant regulator for T cell differentiation [71], we believe that 
TPX2 may participate in OSCC development by regulating 
TOX molecules.

There were still some limitations in our study. Firstly, 
our study mainly focused on the biological function of 
10 hub genes and did not deeply explore the other DEGs. 
Therefore, more investigations are required in future. 
Secondly, because we just utilized ONCOMINE data-
base, TCGA database, and The Human Protein Atlas 
database to verify the expression of hub genes, the exper-
imental assays are also needed to demonstrate the above 
results. Finally, the prognostic model should be further 
validated in large clinical cohort.

Conclusion
Through conducting in silico analyses, 261 overlapping 
DEGs were identified in OSCC, which were mainly associ-
ated with PI3K-Akt signaling pathway, ECM-receptor inter-
action, focal adhesion, metabolic pathways, serotonergic 
synapse, and tyrosine metabolism. We identified 10 hub 
genes (FN1, CXCL8, CXCL10, SPP1, FOXM1, AURKA, 
ISG15, PLAUR, TPX2, and BIRC5), which can act as avail-
able targets for OSCC treatment. Additionally, we con-
structed a nine-gene prediction model that can be utilized 
as the prognostic tool in OSCC. Our study is helpful to 
explore the carcinogenesis of OSCC. Moreover, these find-
ings can improve the prognosis judgement and targeted 
therapy of OSCC.
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