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Abstract

CSL transcription factors are central to signal transduction in the highly conserved Notch signaling pathway. CSL
acts as a molecular switch: depending on the cofactors recruited, CSL induces either activation or repression of
Notch target genes. Unexpectedly, CSL depends on its cofactors for nuclear entry, despite its role as gene regulator.
In Drosophila, the CSL homologue Suppressor of Hairless (Su(H)), recruits Hairless (H) for repressor complex
assembly, and eventually for nuclear import. We recently found that Su(H) is subjected to a dynamic nucleo-
cytoplasmic shuttling, thereby strictly following H subcellular distribution. Hence, regulation of nuclear availability of
Su(H) by H may represent a new layer of control of Notch signaling activity. Here we extended this work on the
murine CSL homologue RBPJ. Using a ‘murinized’ fly model bearing RBPJwt in place of Su(H) at the endogenous
locus we demonstrate that RBPJ protein likewise follows H subcellular distribution. For example, overexpression of a
H*NLS3 protein variant defective of nuclear import resulted in a cytosolic localization of RBPJ protein, whereas the
overexpression of a H*NES protein variant defective in the nuclear export signal caused the accumulation of RBPJ
protein in the nucleus. Evidently, RBPJ is exported from the nucleus as well. Overall these data demonstrate that in
our fly model, RBPJ is subjected to H-mediated nucleo-cytoplasmic shuttling as is Su(H). These data raise the
possibility that nuclear availability of mammalian CSL proteins is likewise restricted by cofactors, and may hence
present a more general mode of regulating Notch signaling activity.
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Background
Development as well as tissue homeostasis of higher
eumetazoa depends on inter-cellular communication
mediated by the Notch signaling pathway. Accordingly,
the Notch signaling pathway is highly conserved in the
evolution of invertebrates and vertebrates alike [1–3].
Upon binding of one of its ligands, the Notch receptor
undergoes cleavage releasing the Notch intracellular

domain NICD. Together with several cofactors, NICD as-
sembles a transcriptional activator complex switching
gene expression, and eventually cell fate, in the signal-
receiving cell [3–7]. Pivotal to Notch target gene regula-
tion is the DNA binding protein CSL; CSL is an acronym
for mammalian CBF1/ RBPJ, for Drosophila Su(H) and for
Caenorhabditis Lag1. Crystal structure analyses of the tri-
meric activator complex revealed that NICD contacts CSL
with its RAM-domain and ankyrin repeats, allowing re-
cruitment of the coactivator Mam [8]. In the absence of
signal, CSL engages in Notch target gene inhibition by
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forming a repressor complex on Notch target gene pro-
moters [9, 10]. Several corepressors have been identified
in mammals, which compete with NICD for the RAM-
binding site within the beta-trefoil domain of CSL [9–12].
The major antagonist of the Notch signaling pathway in
Drosophila is named Hairless (H) [13]. Contrary to most
of the mammalian CSL corepressors, H contacts the C-
terminal domain of the fly CSL homologue named
Suppressor of Hairless (Su(H)) [14–16]. By recruiting two
general corepressors, Groucho and C-terminal binding
protein, the Su(H)-H repressor complex eventually si-
lences Notch target genes [13, 17–19]. With SHARP (also
named MINT), a functional homologue of H has been
identified in vertebrates [9, 11, 20, 21]. SHARP binds CSL
in a bipartite manner, i.e. both within the beta-trefoil
domain and the C-terminal domain, resembling the
interaction of mammalian corepressors as well as of H
with CSL [22].
Unexpected for a transcription factor, CSL apparently

relies on its cofactors for nuclear entry. For example,
mutations of CBF1/RBPJ in the beta-trefoil domain
affecting both, the binding of NICD as well as of core-
pressors, prevented nuclear entry and Notch target gene
activation [23]. Similarly, Su(H) nuclear entry depended
on NICD in a Drosophila cell culture system; hence it
may not enter the nuclear compartment on its own [24,
25]. Moreover, tissue-specific overexpression of H pro-
tein caused Su(H) nuclear accumulation, whereas Su(H)
protein levels appeared reduced in the absence of H pro-
tein [26–28]. In fact, it was demonstrated that Su(H)
protein stability depends on formation of transcription
complexes together with H and NICD, respectively [28].

Subcellular localization of Hairless and suppressor
of Hairless protein
We recently addressed the subcellular localization of H
and Su(H) proteins in Drosophila tissue and showed that
Su(H) protein strictly follows the subcellular localization
of H [29]. H protein contains three potential nuclear
localization signals NLS1–3, with NLS3 being the most
effectual. Accordingly, H*NLS3 mutant protein defective
in NLS3 accumulated within the cytosol. In addition, a
nuclear export signal NES, juxtaposed to NLS3, proved
relevant for the export of H protein from the nuclear
compartment. Mutation of the NES resulted in nuclear
retention of H*NES protein in larval tissues. Endogenous
Su(H) protein co-localized with H protein, i.e. it was
cytosolic when the H*NLS3 mutant was overexpressed
and nuclear in cells expressing H*NES [29]. A double mu-
tant H*NLS3*NES had an intermediate effect, and either
protein distribution resembled the wild type situation,
demonstrating the importance of the NES in H and
Su(H) export. Overall our data implied, that H mediated
shuttling of Su(H) between the nucleo-cytosolic

compartments provided a means of regulating Notch ac-
tivity by restricting nuclear availability of Su(H). Here
we asked, whether mammalian CSL protein might be
subjected to a similar mode of regulation. The fact that
nuclear import of CBF1/RBPJ is dependent on its cofac-
tors as well makes this hypothesis very likely. Moreover,
in yeast two-hybrid assays murine CBF1/RBPJ was
shown capable of binding H with its C-terminal domain
similar to Su(H) [14, 15, 30].

Murine RBPJ protein follows the subcellular
distribution of Hairless protein in the fly
To address the potential role for H on nucleo-
cytoplasmic shuttling of mammalian CSL, we made use
of a ‘murinized’ fly model which we recently established
[30]. In these flies, the endogenous Su(H) locus has been
replaced by the murine CSL orthologue RBPJ using
genome engineering. Interestingly, RBPJwt flies are viable
with subtle phenotypes, demonstrating that the murine
CSL orthologue can replace the majority of Su(H) activ-
ities during fly development [30]. The RBPJwt fly model
allowed us to test, whether RBPJ protein is subjected to
H-mediated nuclear localization like its fly homologue
Su(H), i.e. nuclear import – as expected by a likewise
nuclear import of CBF1/RBPJ by corepressors – as well
as nuclear export, as uncovered for Su(H) in Drosophila.
We applied the Gal4-UAS system [31] for a tissue
specific overexpression of H* variants mutant in a nu-
clear translocation signal, as this setting allows following
the distribution of endogenous CSL protein within larval
tissue [29]. For the overexpression, we used sd-Gal4 [32]
driving UAS-H* transgene expression in the larval saliv-
ary glands, where subcellular protein localization can be
easily visualized in the cytoplasm and nuclei of the giant
cells [29]. To this end, we first combined the RBPJwt

bearing 2nd chromosome with the sd-Gal4 line and the
UAS-H* transgenes, respectively, to generate driver and
effector lines in the RBPJwt genetic background (Fig. 1).
Four RBPJwt-bearing effector lines were established:
UAS-Hcwt as control, UAS-H*NLS3 defective for nuclear
import, UAS-H*NES defective for nuclear export, and
UAS-H*NLS3*NES affecting both, import- and export
signal [29].
Each effector line was crossed with the sd-Gal4; RBPJwt

driver line to induce the overexpression of the respective
H* mutant protein in the salivary glands of RBPJwt

larvae. Staining of the salivary glands then revealed the
subcellular distribution of H* and RBPJwt protein,
respectively (Fig. 2a). As shown earlier [29], H*NLS3

protein was mostly cytoplasmic, whereas all other H*
variants were detected in both, cytosolic and nuclear
compartment. Notably, H*NES appeared more strongly
enriched in the nucleus than Hcwt and H*NLS3*NES

protein (Fig. 2a). As predicted from the subcellular
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localization of Su(H) [29], RBPJwt protein was cytosolic
when H*NLS3 protein was overexpressed, and detected in
the nuclear compartment as well in the presence of any
other H* protein variant (Fig. 2a). To confirm the visual
impression, we quantified the staining intensities of con-
focal micrographs on eight specimen each for every
genotype, comprising a minimum of 160 nuclei. Com-
posite Z-stacks crossing the entire gland were segmented
into nuclei and cytoplasm, and mean grey values were
recorded. The results confirm that murine RBPJwt pro-
tein is shuttled by H protein the same way as is Su(H)
protein (Fig. 2b). Overexpression of the wild type protein
isoform Hcwt caused strong accumulation of RBPJwt

protein in the nucleus, and even stronger, when H*NES

was overexpressed. In contrast, overexpression of H*NLS3

resulted in the retention of RBPJwt in the cytoplasm,
whereas that of H*NLS3*NES allowed RBPJwt protein to re-
enter the nucleus (Fig. 2b). Briefly, we observed a
nucleo-cytosolic shuttling of RBPJwt protein, which
strictly followed H protein distribution in the salivary
glands of Drosophila larvae.
RBPJwt protein accumulated significantly stronger in

nuclei upon the overexpression of H*NES (Fig. 2) which
is defective in the nuclear export signal [29]. Evidently,
RBPJwt is subjected to nuclear export by wild type H
protein similar to Su(H). The importance of nuclear

export of CSL-H has not been elucidated yet. We know,
however, that the H-NES is relevant for fly survival, as in
its absence, only a fraction of the animals developed to
adulthood [29]. In mouse cells, the tubulin-binding pro-
tein RITA induced nuclear export of RBPJ, thereby
downregulating Notch-mediated transcription [33]. The
more important roles of RITA, however, lie in the regu-
lation of microtubule dynamics during mitosis and cell
motility [34, 35]. Albeit its high conservation in the ani-
mal kingdom, RITA has no fly homologue. Accordingly,
despite binding to Su(H) and tubulin, human RITA has
no biological effect on the subcellular distribution or the
stability of Su(H) protein in the fly [36]. In contrast to
mammalian cells, sequestration of Su(H) by a tubulin-
tether in the cytosolic compartment does not occur [36].
Nevertheless, regulation of nuclear availability of CSL
proteins appears an important layer of regulation during
the transduction of Notch signals in vertebrates and
equally in invertebrates.

Conclusion
Nucleo-cytoplasmic shuttling of Su(H) as a means of
regulating Notch signaling activity in the fly has been
already shown. Here we demonstrate that murine RBPJ
is subjected to a likewise dynamic nucleo-cytoplasmic
shuttling by H protein in vivo in Drosophila tissue.

Fig. 1 Crossing scheme. Crossing scheme for establishing (a) the driver line sd-Gal4; RBPJwt / CyO-GFP and (b) the effector lines RBPJwt / CyO-GFP;
UAS-H* (representing the four different H alleles, UAS-Hcwt, UAS-H*NLS3, UAS-H*NES and UAS-H*NLS3*NES, respectively). Direction of the cross is
indicated with males (m), and virgin females (f). Note that sd-Gal4 is X-linked. Crosses of driver and effector lines result in the desired offspring, i.e.
third instar larvae homozygous for RBPJwt that can be selected for the absence of the GFP marker for subsequent analysis of salivary glands
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These data support the hypothesis that nuclear availabil-
ity of mammalian CSL proteins is restricted by their
cofactors, on which they depend for nuclear import.
Moreover, murine RBPJ protein is also subjected to nu-
clear export by H protein. Overall, our data demonstrate
the requirement of corepressors for CLS nuclear trans-
location, emphasizing the additional layer of regulation
at the level of nuclear availability.

Methods
The genome engineered fly stock RBPJwt / CyO-GFP con-
tains murine RBPJ cDNA (isoform 1; the N-terminal 128
codons are derived from Su(H) fused at Val-codon 81 to
RBPJ) in place of wild type Su(H) [30]. The stock was
combined with sd-Gal4 (BL8609) to generate a driver line,
and with either UAS-Hcwt, UAS-H*NLS3, UAS-H*NES or
UAS-H*NLS3*NES [29] to generate an effector line, by stand-
ard genetic crosses as outlined in Fig. 1. To this end, we
made use of the dominant markers snaSco (BL9325) and
L2 (BL319) [37], and a doubly balanced cycGHR7 allele
[38], to be able to follow unambiguously every chromo-
some through all generations. Driver and effector lines
were crossed, and offspring reared at 25 °C to eventually
analyse the salivary glands at third instar larval stage. The
homozygous RBPJwt animals were recognized by the lack
of GFP, otherwise marking the heterozygous siblings due
to the CyO-GFP (BL9325) marker. A Leica MZ FLIII UV
stereo-microscope (Leica, Wetzlar, Germany) illuminated
with CoolLED pE-300white (AHF, Tübingen, Germany)
was used for the purpose of selecting the larvae.
Respective UAS-constructs were expressed in the

developing salivary glands using sd-Gal4. To visualize H
and RBPJ protein expression, immuno-cytochemistry on
third instar larval salivary glands was performed as
outlined before, with a 20min fixation with 4%

Fig. 2 Subcellular co-localization of RBPJ and H proteins. a
Enlargements of salivary glands derived from homozygous RBPJwt

larvae overexpressing the indicated H* protein isoform. Subcellular
distribution of H protein is shown in green and of RBPJ protein in
magenta; the left panel shows the merge. Size bar represents 50 μm
in all panels. The following genotypes are depicted: sd-Gal4/+;
RBPJwt / RBPJwt; UAS-Hcwt/+, sd-Gal4/+; RBPJwt / RBPJwt; UAS-H*NLS3/+,
sd-Gal4/+; RBPJwt / RBPJwt; UAS-H*NES/+, sd-Gal4/+; RBPJwt / RBPJwt;
UAS-H*NLS3*NES/+. b Nuclear to cytoplasmic (n/c) ratio is shown for H
protein (green bars) and Su(H) protein (magenta bars), respectively,
determined from 8 specimen each indicated as squares. Sample
mean and standard deviation is indicated. The dotted line
represents equal distribution in both compartments (i.e. nuclear
equals cytoplasmic grey value). Hcwt is primarily nuclear, and H*NES

even more enriched in nuclei. In contrast, H*NLS3 is located in the
cytosol, whereas H*NLS3*NES is detected in the nuclear compartment
as well. Note that RBPJwt strictly follows H* subcellular protein
distribution. Statistical analysis was performed using ANOVA two-
tailed Dunnett’s approach for multiple comparisons relative to the
Hcwt control (*p < 0.05; **p < 0.01; ***p < 0.001)
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paraformaldehyde [29]. As primary antibodies, we used
guinea pig anti-Hairless A (1:500) [27] and rabbit anti-
RBPSUH (1:200) (D10A4; Cell Signaling Technology,
Cambridge, UK). Goat secondary antibodies (1:250),
coupled to FITC or Cy3 were obtained from Jackson
Immuno-Research (Dianova, Hamburg, Germany). Fluo-
rescently labelled tissue was mounted in Vectashield
(Vector labs, Eching, Germany). Pictures were taken
with a Zeiss Axioskop (Carl Zeiss, Jena, Germany),
coupled to a BioRad MRC1024 confocal microscope
(Carl Zeiss, Jena, Germany; O.S.T.I. microscopy, Milano,
Italy) using LaserSharp 2000™ software. The presented
figures were created using ImageJ, PhotoPaint and Corel-
Draw software.
Quantification of H and Su(H) protein in salivary glands

overexpressing the specific H* nuclear localization mutant
was performed based on confocal micrographs using
Image J software. Z-stacks crossing the entire glands with
1 μm increments were used for maximum projection.
Composite images were segmented into nuclei and cyto-
plasm. Nuclei were defined as region of interest, and sub-
tracted from the outline of the whole gland, defining the
cytoplasm. Mean grey values of nuclei and corresponding
cytoplasm of the entire gland were recorded [29]. Eight
glands each with a total of at least 160 nuclei were ana-
lyzed. Statistical significance was determined by ANOVA
two-tailed Dunnett’s approach for multiple comparisons.
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CBF1: C promoter binding factor 1 (mammalian); CSL: CBF1/RBPJ, Su(H), Lag-
1 (acronym); Gal4: galactose responsive transcription factor (from S.
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