
REVIEW Open Access

PP2A and tumor radiotherapy
Xiao Lei†, Na Ma†, Lehui Du†, Yanjie Liang, Pei Zhang, Yanan Han and Baolin Qu*

Abstract

Protein phosphatase 2A (PP2A) is a serine/threonine phosphatase that serves as a key regulator of cellular
physiology in the context of apoptosis, mitosis, and DNA damage responses. Canonically, PP2A functions as a
tumor suppressor gene. However, recent evidence suggests that inhibiting PP2A activity in tumor cells may
represent a viable approach to enhancing tumor sensitivity to chemoradiotherapy as such inhibition can cause cells
to enter a disordered mitotic state that renders them more susceptible to cell death. Indeed, there is evidence that
inhibiting PP2A can slow tumor growth following radiotherapy in a range of cancer types including ovarian cancer,
liver cancer, malignant glioma, pancreatic cancer, and nasopharyngeal carcinoma. In the present review, we discuss
current understanding of the role of PP2A in tumor radiotherapy and the potential mechanisms whereby it may
influence this process.
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Introduction
While mainstays of tumor treatment efforts, conven-
tional radiotherapy and chemotherapy often yield unsat-
isfactory therapeutic outcomes [1–3]. These poor
outcomes are generally linked to tumor cell multidrug
resistance and resistance to ionizing radiation [4–6]. In
addition, while these treatments are well-tailored to kill-
ing rapidly proliferating tumor cells, they generally fail
to impact hypoxic and quiescent cells, ultimately result-
ing in treatment failure and tumor recurrence [7–9]. Un-
derstanding the mechanistic basis for tumor cell
chemoresistance and radioresistance is thus vital. Inter-
estingly, recent research evidence suggests that radiosen-
sitization can be achieved by accelerating cell cycle
progression in quiescent cells such that they become
proliferative [10, 11]. Inhibiting proteins such as PP2A
can drive quiescent tumor cells to enter mitosis, in turn
potentially increasing tumor cell sensitivity to treatment
[12, 13]. Inhibiting PP2A may therefore represent a

valuable new approach to promoting tumor radiosensiti-
zation. In the present review, we discuss current re-
search progress pertaining to the role of PP2A in the
context of tumor radiotherapy.

The role of PP2A in radiation therapy
PP2A is a serine/threonine phosphatase that functions
as a tumor suppressor gene [14]. It is a complex com-
posed of a core enzyme and a regulatory subunit. The
core enzyme (PP2AD) is a dimer comprised of a 36 kD
catalytic subunit (PP2A c) and a 65 kD regulatory sub-
unit (PR65 or subunit A). PP2A has three subunits, in-
cluding subunit A and two subtypes of subunit C (α and
β), with each of these subunits exhibiting distinct struc-
tural and catalytic activities. There are also multiple sub-
types of subunit B that serve to control the specificity
and localization of PP2A. Overall, there are four families
of regulatory B subunits capable of binding to the core
enzyme: B (PR55), B′ (B56 or PR61), B“ (PR72), and B’“
(PR93/PR110) [15–17]. Early research suggested that
PP2A functions as a classic tumor suppressor gene that
is downregulated or nonfunctional in many tumor types
including lung, skin, breast, brain, ovarian, cervical, and
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colon cancers [18–20]. At a functional level, PP2A in-
hibits a range of tumor signaling pathways [21], prevent-
ing IL-2-induced JAK3 and STAT5 activation, which is
normally dysregulated in many malignancies [22]. PP2A
can also interact with the ERK2/MEK and Ras/Raf signal-
ing pathways through direct and indirect mechanisms so
as to control their activation. Given that constitutive Ras/
Raf/MEK/ERK signaling is a characteristic of many malig-
nant tumor cells [23–26], these highlights another mech-
anism whereby PP2A can control oncogenesis. PP2A can
also mediate proteasome dephosphorization and thereby
impact c-Myc, which is often constitutively active in the
context of tumorigenic transformation [27, 28].
Tumor metastasis, recurrence, and radioresistance all

represent major roadblocks to the effective treatment of
cancer patients [29, 30]. Following PP2A inhibition,
many tumors exhibit slower growth, increased apoptotic
cell death, and greater sensitivity to ionizing radiation, as
has been observed in the context of nasopharyngeal car-
cinoma, ovarian cancer, pancreatic cancer, liver cancer,
and malignant glioma [31–35]. In malignant glioma, for
example, PP2A inhibition increases the frequency of
cells in the M phase of mitosis, inhibiting tumor prolif-
eration while driving increased radiosensitivity [31].
Similarly, PP2A inhibition in nasopharyngeal carcinoma
has been linked to significant increases in the frequency
of apoptotic cells and G2/M arrest [36]. Likewise, inhi-
biting PP2A in cancer significantly delayed DMA dam-
age repair and thereby facilitated more rapid cell death
following irradiation [37].

Potential mechanisms whereby PP2A influences
radiotherapy outcomes
The role of PP2A in mitosis
PP2A is a key regulator of normal mitotic processes [38].
Greatwall kinase inhibited PP2A by small proteins ENSA
and ARPP19, thereby attenuating PP2A-regulated Cdk1
dephosphorylation and promoting mitosis, whereas severe
mitotic defects occur in the absence of greatwall kinase
[39, 40]. PP2A also negatively regulates Cdk1 activity via
activating wee1/myt1 and by inhibiting cdc25 [41]. Inhi-
biting PP2A can also drive the upregulation of molecules
downstream of Cdk1, thereby promoting mitosis. This
greatwall kinase/PP2A signaling pathway is thought to be
a primary regulator of normal Cdk1 functionality in the
context of mitosis [42]. PP2A can also act on other mitotic
mediators such as the mitosis-specific kinases PLK1,
which is a key marker of G2/M phase arrest following
PP2A inhibition and which interacts with centrosomes
during mitosis [43, 44]. PP2A is also involved in the nega-
tive feedback inhibition of PLK1 and Aurora B, thereby
regulating the spindle collection checkpoint in order to
ensure that microtubules are properly connected to the
centromere [45].

Inhibiting PP2A causes G2/M cell cycle checkpoint
inactivation and alters DNA damage repair
Radiation-induced DNA damage can induce cell cycle ar-
rest and DNA damage repair that is mediated by DNA
damage checkpoint activation [46]. Irradiation-associated
DNA damage can lead to G2/M checkpoint activation and
consequent G2/M phase arrest, enabling DNA repair to
occur prior to cellular entry into mitosis [47]. Cdc2/Cyclin
B is a key regulator of this G2/M checkpoint, as Cdc2/
Cyclin B activation is required in order for cells to proceed
from the G2 phase into the cleavage phase [48]. DNA
damage is rapidly followed by the phosphorylation and ac-
tivation of the ATR and ATM kinases, which in turn acti-
vate Chk2 and Chk1 [49]. Chk2 and Chk1 function in part
by suppressing the activation of Cdc25 family proteins
such that Cdc2/Cyclin B activation is inhibited. Following
DNA damage, Cdc2/Cyclin B activity is thus reduced,
resulting in cell cycle arrest [50]. Following drug- or
radiation-induced DNA damage, PP2A dephosphorylation
can inhibit PLK1, which phosphorylates and activates
Cdc25 and cyclins involved in the G2/M checkpoint,
thereby facilitating cell cycle progression. PP2A may thus
prevent cells from dividing by inhibiting PLK1 [44]. More-
over, inhibition of PP2A showed that radiation-induced
inactivation of ATR and Chk1 kinase, phosphorylation of
Cdc2-Tyr15, and inactivation of G2/M phase checkpoints,
which attenuated radiation-induced G2/M arrest, thereby
enabling tumor cells to enter into mitosis via reducing
DNA damage repair efficiency and aggravating cellular
mitotic disorders [51].

Inhibiting PP2A promotes G0 stage tumor cell entry into
mitosis
Cdk2 activity has recently been found to govern the pro-
liferation of quiescent cells following mitosis, such that
cells enter the G0 phase when Cdk2 activity levels are
low. Regulating Cyclin E/Cdk2 activity at the end of the
cell cycle can promote cellular proliferation [12]. In
adult organisms, PP2A has been found to promote cellu-
lar quiescence [52]. In studies of Drosophila eyes and
wings, researchers have determined that inhibiting PP2A
at the end of the cell cycle can induce additional cell div-
ision and thereby impair such quiescence. In these Dros-
ophila, the PP2A subunit B56 family member wdb serves
as an important regulator of PP2A-related cellular quies-
cence. When PP2A activity is suppressed, cells that
would normally enter the stationary phase instead ex-
hibit robust Cdk2 activity [53]. Ectopic dominant testing
has further revealed that abnormal Cyclin E/Cdk2 activ-
ity can promote additional cell cycle progression in the
context of PP2A inhibition [12]. Reduced wdb/PP2A ac-
tivity results in abnormally elevated Cyclin E levels, en-
abling quiescent cells to pass through the G0 phase and
to thereby enter into mitosis [54], increasing cellular
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sensitivity to radiotherapy and chemotherapy. Given the
important role of tumor cell quiescence as a driver of
tumor radioresistance and recurrence in cancer patients
[55], inhibiting PP2A may represent a viable means of
promoting tumor radiosensitivity by driving cells in the
G0 phase of the cell cycle to undergo mitosis.

PP2A as a regulator of apoptosis
PP2A can control apoptosis by influencing both PI3K/
Akt pathway signaling and the expression and activity of
apoptosis-associated proteins [56]. In cells with func-
tional Bcl-2, for example, PP2A has been shown to pro-
mote Bcl-2 dephosphorization and to thereby promote
apoptotic cell death [57–59]. In contrast, in cells that are
highly metabolically active, PP2A can dephosphorylate
and thereby activate CaMKII so as to exert an anti-
apoptotic effect [60]. PP2A also modulates the P53 path-
way such that it can activate Bax/Noxa/Puma and inhibit
Bcl-2 to drive apoptotic death [61–63].
In the context of the DNA damage response, the ATM

signaling pathway directly activates and stabilizes PP2A by
phosphorylating the ubiquitin ligase MDM2. PP2A in turn
inhibits Akt1 pathway activity and thereby suppresses
MDM2 activation, thus preventing the MDM2-mediated
degradation of p53 [64]. In the presence of irreversible
DNA damage, PP2A can also directly dephosphorylate
p53, stabilizing this protein an inducing cell cycle arrest
and apoptosis [65]. Inhibiting PP2A may therefore be a vi-
able therapeutic strategy in highly metabolically active
tumor cells. Suppressing PP2A activity in cells exhibiting
DNA damage can also inhibit Bax expression and pro-
mote the cell cycle [65]. Studies of combination radiother-
apy and PP2A inhibition have highlighted the consequent
inhibition of interactions between p53 and PP2A, reducing
the role of the p53 pathway in response to DNA damage
and promoting cellular proliferation and p53-independent
apoptotic cell death [66].

PP2A as a regulator of the WNT/β-catenin signaling
pathway
PP2A is capable of inhibiting WNT/β-catenin signaling
pathway activity [67], which normally plays important
roles in governing the migration and proliferation of
cells [68]. After WNT ligands interact with specific cell
surface receptors, the Tcf family transcriptional coactiva-
tor β-catenin undergoes nuclear translocation, interacts
with Tcf, and modulates target gene expression. This
process often becomes constitutively activated during
the early stages of oncogenesis [69]. In tumor cells in
which the WNT signaling pathway is not active, cyto-
plasmic β-catenin is generally degraded. A complex
composed of APC, DVL, Axin, and β-3-glycogen synthe-
sis kinase can target β-catenin for degradation [31].
However, the PP2A-C regulatory subunit has also been

shown to play downstream signaling roles in the context
of the WNT/β-catenin signaling pathway [70]. Aspirin
has also been found to downregulate WNT/β-catenin
signaling pathway activity via inhibiting PP2A [71]. Posi-
tive PP2A feedback signaling has also been suggested to
alter the WNT/β-catenin signaling pathway in pancre-
atic cancer and colorectal cancer cell lines, thereby sta-
bilizing the activation of this pathway [72, 73].

Current clinical approaches to inhibiting PP2A as an
approach to tumor radiosensitization
To date, pharmacological inhibition of PP2A has largely
been dependent upon the use of natural compounds
such as okadaic acid and anthraquinone [74]. These
compounds, however, exhibit varying degrees of toxicity.
In contrast, LB100 is a water-soluble PP2A inhibitor that
is less toxic than these other compounds. Research sug-
gests that while radiotherapy can enhance PP2A activity,
LB100 pretreatment prior to radiotherapy can suppress
PP2A activation while simultaneously enhancing tumor
sensitivity to irradiation [75]. LB100 has been leveraged
in several clinical trials as a PP2A inhibitor owing to its
efficacy and low toxicity [76]. In one study of pancreatic
cancer, for example, LB100 was found to effectively
radiosensitize pancreatic cancer cells without adversely
affecting normal small intestinal cells [77]. LB100-
mediated PP2A inhibition has also been shown to pre-
vent radiation-induced Rad51 foci formation and hom-
ologous recombination repair, thereby causing sustained
DNA damage in cells following radiation exposure [77].
The presence of undifferentiated stem-like tumor cells
capable of undergoing self-renewal is thought to be one
of the key mechanisms underlying tumor recurrence and
therapeutic resistance. Traditional radiotherapy and
chemotherapy efforts are largely unable to impact these
cancer step cells, as they grow slowly and are largely qui-
escent [78, 79]. There is recent experimental evidence
that the receptor co-repressor protein complex is a pri-
mary determinant of the stem-like properties of cancer
stem cells in glioma tumors [80]. This receptor co-
repressor protein complex is composed of the receptor
co-repressor protein, a deacetylase complex, steroids,
hormone receptors, and transcription factors that func-
tion to control transcription in the context of glial differ-
entiation [81]. Cytokine-induced ciliary neurotrophic
factor stimulation of glioma precursor cells has been
shown to inhibit receptor co-repressor protein complex
activity via Akt/PI3K-mediated phosphorylation of the
receptor co-repressor protein [82]. Inhibition of PP2A
using LB100 resulted in enhanced Ak1 activity, thereby
preventing receptor co-repressor protein complex for-
mation and promoting cellular division, rendering quies-
cent tumor cells more sensitive to irradiation [31].
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Perspectives
Inhibiting PP2A has been conclusively shown to enhance
tumor cell radiosensitivity. However, further research is
necessary in order to facilitate the optimal clinical imple-
mentation of these experimental findings. For example,
while many studies have assessed the impact of inhibit-
ing PP2A in tumor cells following radiation exposure,
few studies have assessed the effect of such inhibition on
normal tissues, which may also undergo potential radio-
sensitization [83–85]. Differences in PP2A expression
profiles between normal and tumor tissues are also es-
sential to ensure that tumor cells can be effectively killed
without causing undue harm to healthy tissues. At
present, there are also few specific inhibitors of PP2A
available. To leverage the potential clinical utility of
combination PP2A inhibition and radiotherapy treat-
ment, it is vital that novel highly specific PP2A inhibitors
be developed. The identification of specific inhibitors
that preferentially target tumor cells while leaving
healthy cells intact would further advance the clinical
applications of PP2A inhibition. It is also important to
note that many studies of PP2A inhibition have focused
only on single factors [86–88], whereas tumor resistance
and recurrence are multifactorial in nature. At present,
there is a dearth of systematic or comprehensive studies
pertaining to the mechanisms whereby PP2A inhibition
bolsters the efficacy of radiation therapy.

Conclusion
In summary, inhibiting PP2A in combination with radio-
therapeutic treatment may represent a viable approach
to enhancing patient treatment outcomes and preventing
tumor recurrence. However, further research regarding
the mechanisms underlying such combination efficacy is
still required. In addition, more specific pharmacological
inhibitors of PP2A must be developed in order to
achieve better clinical outcomes.
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