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Abstract

Background: Argonaute (AGO) protein is a kind of RNA binding protein that plays an integral role in the
gene-silencing pathways guided by small RNAs. But there are few studies about the regulation of AGO
genes responded to diverse abiotic stress in maize.

Results: In this study, we analyzed the expression of seventeen ZmAGO genes under heat, cold, salinity, drought and
ABA treatments using quantitative PCR (gPCR). All ZmAGOs showed differential expression modes under various abiotic
stress treatments. Two ZmAGOs (ZmAGOTa and ZmAGO5d) and other fifteen ZmAGOs exhibited specific up-regulation
in response to heat separately. Several ZmAGO genes are very sensitive to cold stress, but many ZmAGO genes are slow
to respond to NaCl treatment. Nine ZmAGO genes (ZmAGOTf, ZmAGO2b, ZmAGO4, ZmAGO5a/b/c, ZmAGO7, ZmAGO9
and ZmAGO18a/b) presented definite up-regulation in response to drought, which were similar to the pattern of gene
regulation under abscisic acid (ABA) treatment.

Conclusions: Various ZmAGO genes respond to different abiotic stress treatments. These results provide fundamental
information and insights for the further study on the role of abiotic stress resistance genes in maize and provide basis

for further study on the function of AGO genes in response to abiotic stress in maize.

Background
Global climate change threatens crop yield by imposing
ambient pressures such as cold, drought, salinity, heat
and other abiotic and biotic stresses [1]. Numerous stud-
ies indicate that small RNAs (sRNAs) have important
roles in gene expression regulation during the abiotic
and biotic stresses in all plants [2-6]. Argonaute (AGO)
proteins are the key effectors of the RNA-induced silen-
cing complex (RISC). The small RNAs are categorized
to bind to specific AGO family proteins which then
guide RISC to silence their targets through complemen-
tary base paring. Typical functions of plant RISCs
include the target RNAs endonucleolytic cleavage or
translational inhibition and the target DNAs methyla-
tions [7, 8].

In plants, different species encode different numbers
of AGO family members. Arabidopsis possesses 10
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AGOs [9], whereas there are 17 in maize [10] and 19 in
rice [11]. Phylogenetically, plants AGOs are divided into
three major groups: AGO1/5/10, AGO2/3/7 and AGO4/
6/8/9. In addition, the grass-specific AGO18 family has
an important role in viral defense and plant
reproduction [12, 13]. A series of studies of agol mu-
tants indicated that AGO1 has a role in leaf polarity [14]
and lateral organ development [15] of Arabidopsis, and
that AGO1 plays a role in carrying out the function of
most miRNAs [16]. Furthermore, AtAGO1 also func-
tions to effectively clean up viral RNAs [17, 18]. Recent
research showed that AtAGO1 binds to chromatin to
promote gene expression in response to plant hormones
and stresses [19]. In addition, AGO1 also interacts with
chromatin at MIR161 and MIR173 loci and leads to the
disassembly of the transcriptional complex, releasing
short and unpolyadenylated transcripts under salt stress
conditions [20]. AtAGOI10 functions in inflorescence
meristem and shoot apical meristem development
through completely binding to miR165/166 with
AtAGO1 and jointly binding to miR172 to enhance the
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function of AtAGO1, respectively [21-23]. Different
from AtAGO1 and AtAGO10, it was discovered that
AtAGOS5 expressed around reproductive cells during
megasporogenesis, and ago5 mutants exhibited deficien-
cies in the initial stage of megagametogenesis [24]. Re-
cent research showed that AtAGO5 expression is
induced by Potexvirus infection and that both AtAGO2
and AtAGOS5 are needed to completely limit PVX infec-
tion in Arabidopsis [25].

AtAGO2 is found to play a key role in pathogen
defense and DNA repair [26-29]. Although AtAGO3
and AtAGO?2 are tandem repeat genes, AtAGO3 can-
not act redundantly with AtAGO2 in pathogen
defense. However, AtAGO3-associated sRNAs are
similar in that they all bind to AtAGO4, suggesting
that AtAGO3 participates in plant DNA methylation
[30]. AtAGO?7 plays an essential role in accelerating
the phase change from juvenile to adult stage, and
also takes part in the TAS3-based tasiRNA biogenesis
[31]. In addition, like AtAGO1, AtAGQO7 participates
in pathogen defense [17].

AtAGO4 and AtAGO6 bind to different RNA poly-
merases to carry out RNA-induced DNA methylation
orderly [32]. Meanwhile, AtAGO6 also plays a role in
transcriptional gene silencing which mediated by RNA
in shoot and root meristems [33]. Moreover, AtAGO4
is involved in virus resistance [34, 35]. AtAGOS is
considered as a pseudogene [36] and has no homolo-
gous gene in rice and maize. Recently, it was found
that AGO8 mediated the induction of primary defense
against herbivory in Nicotiana attenuata [37]. Never-
theless, AtAGO9 regulates germ cell fate by a non-
cell autonomous sRNA pathway [38, 39].

Viral-inducible OsAGO18 sequesters miR168 to ease
the repression of rice OsAGO1 by miR168 to enable
antiviral defense in the infected rice [40]. OsAGO18 also
competes with OsAGO1 for binding to miR528, result-
ing in the release of the negative regulation of AO gene
by OsAGO1-miR528, and then boosts the ROS accumu-
lation to trigger the pathogen defense pathway [41].
However, high level of specific expression of ZmAGO18
in the tapetum and germ cells of maize meiotic anthers
[10] is implicated that ZmAGO18 is a negative regulator
to determine the inflorescence and axillary meristems by
interacting with the regulatory pathway of miR166-HD-
ZIP III TF [13]. The expression pattern of ZmAGOla
under five different abiotic stresses indicated that ZmA-
GOla might play an important role in both development
and responses to environmental change as a member of
the AGO gene family in maize [42]. Therefore, AGO
genes function in the development and pathogen defense
of plants, and AGO genes would be up- or down-regu-
lated under virous abiotic stress in rice [11, 43] and cu-
cumber [1].
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In this study, we analyzed the differential expressions
of 17 ZmAGOs in maize under various abiotic stress
treatments, and explored potential drought resistance
function of ZmAGO18b, which provided a basis for fur-
ther understanding and study the stress tolerance mech-
anism of this important crop.

Results and discussion

Expression patterns of ZmAGO genes under heat stress
To investigate the heat stress-responsiveness of ZmAGO
genes in maize, we transferred the whole maize seedlings
into an incubator at 40°C and then sampled at the six
different points (0, 0.5, 1, 2, 4, and 12h). The results
showed that all ZmAGOs responded to heat stress.

It was found that 10 (ZmAGOIf, ZmAGO2b,
ZmAGO4, ZmAGOS5a/b/c, ZmAGO7, ZmAGOY9, ZmA-
GO10b and ZmAGO18a) of the 17 genes were upreg-
ulated by this treatment at 1h and then declined at
2h, 4h and 12h (Fig. 1a). Among these 10 genes,
ZmAGO2b and ZmAGOS5a were relatively upregulated
strongly at 1h after treatment. Interestingly, ZmA-
GO1b/c, ZmAGO2a, ZmAGO10a and ZmAGOIS8b
were upregulated and then downregulated at 2h after
heat treatment (Fig. 1b), indicating that each AGO
gene has its own function which regulates gene ex-
pression in different time periods during abiotic
stress. In addition, ZmAGOla and ZmAGOS5d were
downregulated relative to control treatment (Fig. 1c).

Expression profiling of ZmAGOs in response to cold stress
For cold stress, we examined the expression levels of
ZmAGO genes in whole seedlings at the six different
points (0, 0.5, 1, 2, 4, and 12h) under 4°C treatment
using qPCR. The results of the relative expression levels
of the cold-treated samples are shown in Fig. 2.

Compared to the control, ZmAGOS5d, ZmAGO?7 and
ZmAGO10a were downregulated (Fig. 2d), other
ZmAGOs were upregulated in varying degrees by this
treatment. The expression of ZmAGOIlc, ZmAGQO2a,
ZmAGOSa and ZmAGOS5c¢ were upregulated up to
0.5 h after the cold treatment and then declined grad-
ually at 1, 2, 4 and 12h (Fig. 2a). ZmAGOla, ZmA-
GOI1b, ZmAGOIlf, ZmAGO4, ZmAGO9 and
ZmAGOI0b increased slightly up to 1h after treat-
ment and downregulated thereafter (Fig. 2b). ZmA-
GO2b, ZmAGOS5b, ZmAGO18a and ZmAGOI8b were
downregulated at 0.5h after treatment but then were
upregulated at 1h, followed by a decrease at 2h, 4h
and 12h (Fig. 2c). The results showed that almost all
ZmAGOs were responsive to low temperature. Fur-
thermore, the expression level of all ZmAGOs was
very low at 4h after treatment, indicating that maize
could resist low temperature for 4h through various
gene expressional regulation.
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Fig. 1 gPCR analysis of ZmAGO genes expression in response to 40 °C treatment at 0, 0.5, 1, 2, 4, 12 h of treatment. ZmActin normalizes the data

Expression analysis of ZmAGO genes by qPCR under NaCl
treatment

To discover the responsiveness of ZmAGO genes to NaCl
treatment, the seedling roots were submerged in a solu-
tion of 0.2 M NaCl, and the whole seedlings were sampled
at 0, 0.5,1, 2, 4, and 12 h after treatment.

Eight  genes  (ZmAGOla/c,  ZmAGOSb/c/d,
ZmAGO7 and ZmAGO10a/b) out of 17 were
downregulated slightly by NaCl treatment (Fig. 3b).
ZmAGO1b/f, ZmAGO2b, ZmAGO4, ZmAGOS5a,
ZmAGO9 and ZmAGO18a genes were slightly upreg-
ulated until 4h after NaCl treatment and were
downregulated at 12h after NaCl treatment. But
ZmAGO2a was upregulated slightly up to 4 and 12h
after NaCl treatment. On the contrary, ZmAGO18b
was upregulated at 0.5 and 1h after NaCl treatment
and then declined at 2, 4, and 12h (Fig. 3a).
Altogether, the results showed that all ZmAGOs
were slightly responsive to NaCl stress.

Responses of ZmAGOs to drought stress

For drought stress, we pulled the seedling roots out of
the soil without water supply, and the whole seedlings
were sampled at 0, 0.5,1, 2, 4, and 12h after drought
treatment. The expression analysis showed that all
ZmAGO genes were induced to response to the drought
treatment.

According to the response to drought stress,
ZmAGO genes can be divided into two categories
which are slightly and strongly induced group. ZmA-
GOla/b/c, ZmAGOI10a/b, ZmAGOS5d and ZmAGO2a
were upregulated slightly at 1h after the drought
stress and then decreased at 2, 4 and 12h (Fig. 4a).
Ten (ZmAGO1f, ZmAGO4, ZmAGO5a/b/c,
ZmAGO7, ZmAGO9, ZmAGOI18a/b and ZmAGO2b)
of the 17 genes were significantly upregulated by
drought treatment at 1h and then declined at 2, 4
and 12h (Fig. 4b). It should be emphasized that
ZmAGO18a (539.9-fold upregulated compared to the
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control) and ZmAGO18b (730.8-fold upregulated
compared to the control) were highly induced at 1h
under the drought stress, indicating that the ZmA-
GO18a/b plays important roles in gene regulation
during the drought stress.

The expression pattern of ZmAGO genes under ABA
treatment

To discover the responsiveness of in maize to ABA
treatment, we investigated the transcript levels of
ZmAGO genes in maize whole seedlings under ABA
treatment by qPCR. Interestingly, we found that
ZmAGO genes responded to the ABA treatment in a
time-dependent manner.

ZmAGO4 and ZmAGOS5b/c were upregulated slightly
up to 1h after the ABA treatment and then decreased at
2, 4 and 12h (Fig. 5a). ZmAGO2b, ZmAGOS5a,
ZmAGO7, ZmAGO10b and ZmAGOI18a were upregu-
lated gradually at 0.5, 1 and 2h and then declined at 4

and 12h. Meanwhile, the highest expression level of
ZmAGOI8h was at 4h after the ABA treatment and
then declined at 12 h (Fig. 5b/d). In the end, ZmAGOIa/
b/c/f and ZmAGO9 were maximized induced expression
at 12h (Fig. 5c). But beyond that, ZmAGO2a, ZmA-
GOS5d and ZmAGO10a were slightly downregulated by
the ABA treatment compared to the control (Fig. 5d).

In eukaryotic sSRNA-based gene silencing pathways,
AGO proteins are effectors which function in gene
expression regulation and chromatin modification.
The majority of studies about plant AGOs revealed
their function in plant development and pathogen
defense. Some studies reported that plant AGO genes
also respond to abiotic stresses. In Oryza sativa, nine
of 19 OsAGOs (0OsAGOla/b/c/d, OsAGO2, OsA-
GO4a/b, OsPNHI and OsAGO1I16) were upregulated in
response to salt, cold and dehydration stresses by
microarray-based expression analysis. The samples
were collected the 7 days-seedlings which were treated
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3h by the above three stresses [11]. But in the
current study, all 17 ZmAGOs were downregulated at
4h after the cold treatment compared to the control.
ZmAGOIb/f, ZmAGO2b, ZmAGO4, ZmAGO3a,
ZmAGO9 and ZmAGO18a genes were slightly upreg-
ulated until 4h after salt treatment. Another study
about OsAGOs expression analysis indicated that six
OsAGO genes (OsAGOla/d, OsAGO3, OsAGO?7,
0sAGO13 and OsAGO16) were up or down-regulated
in response to one or more of the phytohormone 1-
Naphthaleneacetic acid (NAA), Kinetin (KT) and
Gibberellin A3 (GA3) in seedlings at trefoil stage
[43]. Furthermore, these six OsAGOs were sensitive
to different hormones and differences existed among
varieties [43]. In the present study, 14 out of 17
ZmAGOs were sensitive to ABA and these genes
responded to the ABA treatment temporally. Interest-
ingly, the recent research illustrated that AtAGOL1 is
responsive to hormones and cold stress and triggered

by these stimuli to bind to stimuli-responsive genes
[19]. In addition to the classical RNAi mechanism, it
is suggested that plant AGO genes might facilitate
the induction of genes in virous stimuli signaling
pathways and the activation of the stimuli responses.
Notably, monocots-specific AGO18 gene is distinct-
ive. OsAGO18 and ZmAGO18 exhibited high level
expression during reproductive stage. Whereas
OsAGO18 participates the process of pathogen
defense [41], ZmAGO18b specifically expresses in
meiotic anthers [10] and plays an crucial role in the
determinacy of inflorescence and axillary meristems
[13]. In this study, ZmAGO18a and ZmAGO18b were
significantly reduced in seedlings by drought treat-
ment. This result demonstrates the importance of
ZmAGO18s during the drought stress. Further studies
should be carried out to investigate mechanisms of
the ZmAGO18s function in drought stress, and to
provide new insights into the drought resistance.
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Stress responsive elements in the promotor of ZmMAGO
genes and the phenotype of ZmAGO18b mutant after
drought treatment

Several cis-acting elements related to plant develop-
ment and response were identified, implicating the
possible involvement of AGO gene family in develop-
ment and stress tolerance (Additional file 1: Table
S1). We selected two typical stress responsive ele-
ments (STRE and TC-rich repeats) and one ABA re-
sponsive element (ABRE) to demonstrate the
distribution of cis-acting elements in the promotor re-
gion (Fig. 6).

As shown in Fig. 6, STRE element is abundant in pro-
motor region of the majority of AGO gene family. In
addition, we found that genes with the same expression
pattern are likely to have similar elements. For example,
ZmAGOI18b and ZmAGOSa were specifically expressed
in meiotic tassel [10] and they were all responsive to

drought and heat in this study, and the largest number
of STRE elements were distributed in their promotor re-
gion, 8 and 12, respectively. These data suggested that
these genes might have potential function of resistance
to stress during the meiosis of tassel. ZmAGOIf and
ZmAGOI0b are highly expressed in immature tassel,
and they have unique TC-rich repeats element. The
ABA-insensitive genes (ZmAGOla/b, ZmAGO2a, ZmA-
GO5d and ZmAGO10a/b) have fewer ABRE, but not all.
To further determine the drought response of ZmA-
GO18b gene, we observed the phenotype of Mutate-me-
diated mutant of ZmAGO18b (ago18b:mum) described
previously [13]. The results showed that the mutant
leaves displayed more severe yellowing after 24h of
drought treatment (Fig. 7), indicating the drought
resistance function of ZmAGO18b gene. We will
further study the drought resistance mechanism of
ZmAGO18b gene.
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Conclusions

In summary, this work is the first report on expression
analysis of all ZmAGO genes in maize under heat, cold,
salt, drought and ABA stress treatments. We discovered
that various ZmAGO genes respond to different abiotic
stress treatments. And ZmAGO18b may have potential
drought resistance function, which prompts us to further
study its drought resistance mechanism. According to
results of the present study, it should consider as a basis
for intensive functional research of ZmAGO genes dur-
ing abiotic stress.

Materials and methods

Plant materials and treatments

Seeds of maize (Zea mays L. cvB73) were grown in pot-
ting soil under greenhouse conditions at 25 °C with an 8
h dark and 16 h light (Department of Molecular Biology
of Hubei University of Arts and Science, Xiangyang,
China). Two-week-old seedlings growing synchronously

were selected to impose different abiotic stress treat-
ments, which including heat, cold, salinity, drought and
abscisic acid (ABA). Gene expression was analyzed at
different time points of treatments (0, 0.5, 1, 2, 4, and
12 h). We select three individual and whole seedlings as
three independent biological replicates at each treatment
point. For cold and heat treatments, potted maize seed-
lings were respectively incubated at 4 °C and 40 °C. Sal-
inity treatment was applied by submerging seedling
roots in a 0.2 M NaCl solution. To impose the drought
treatment, we gently pulled the whole maize seedlings
out of the soil. In order to remove the adhering soil, we
washed their roots carefully with fresh water. Then the
seedlings were incubated on a dry paper towel at 25°C,
water was not supplied throughout the treatment
process. For ABA treatment, seedlings roots were sub-
merged in a solution of 0.1 mM ABA. Rapid freezing of
samples with liquid nitrogen and preservation at — 80 °C
for RNA isolation.
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Seeds of W22 and Mutate-mediated mutant of ZmA-
GO18b (agol8b:mum) which described in the previous
study [13] were also grown under the conditions de-
scribed above for drought treatment. The phenotype of
these materials after drought treatment for 24 h were
observed.

RNA extraction and qPCR

Total RNA from the different stress treated samples was
extracted using Trizol (Invitrogen, Carlsbad, CA, USA).
Genomic DNA contaminants were removed from the
RNA by treating the RNA with DNasel (TaKaRa Biotech,

Dalian, China). A Qubit 2.0 (Invitrogen) was used to
measure the RNA concentration in each sample. An
oligo (dT) primer and M-MLV (Invitrogen) reverse tran-
scriptase was used to synthesize first-strand cDNAs from
RNA following the manufacture’s protocol.
Gene-specific  primers reference to previous
described for the qPCR expression analysis [10].
ZmActin (NM_001155179) was used as the internal
control and was amplified with the primers 5'- TACG
AGATGCCTGATGGTCAGGTCA -3° and 5'-
TGGAGTTGTACGTGGCCTCATGGAC -3'. QPCR
was carried out on the Bio-RAD CFX96 using the

T T

.q—’ o -

ntal (W22)

G ek - ’1\\‘>
A

Fig. 7 The phenotype of W22 and ago18b:mum after 24 h of drought treatment and corresponding control. a W22 without drought treatment. b
ago18b:mum without drought treatment. ¢ W22 with drought treatment. d ago18b:mum with drought treatment
.




Zhai et al. Hereditas (2019) 156:27

SYBR FAST qPCR Kit Master Mix (2x) LightCycler
(KAPA, USA). The qPCR was conducted in 20 pL re-
action volumes consisting of 3.0 uL diluted cDNA,
1.0uL forward and reverse primers (10puM), 10 pL
SYBR FAST qPCR Kit Master Mix (2x) LightCycler
(KAPA, USA) and 5pL double-distilled water. The
qPCR conditions were as follows: pre-denaturation for
300s at 95°C, 40cycles at 95°C for 10s, 58°C or
60°C for 20s. Three biological replicates were per-
formed. The relative gene expression was calculated
using the 274" method [44] in the EXCEL software.

Cis-regulatory elements analysis of ZmAGOs promotor

To analyze the stress responsive elements of ZmAGO
genes, we identified putative cis-regulatory elements
of about 5 to 10 bp in around 1500-bp upstream from
the start codon (ATG) of 17 ZmAGO genes using the
PlantCARE web tool (http://bioinformatics.psb.ugent.
be/webtools/plantcare/html/).

Additional file

Additional file 1: Table S1. Putative cis-elements of more than 5 bp
identified in 17 ZMAGO genes using PlantCARE database. (XLSX 64 kb)
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