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Abstract

To search the evidence of molecular evolution mechanism for aquatic and cave habitat in Andrias davidianus, the
evolution analysis was carried out among several species transcriptome data. The transcriptome data of Notophthalmus
viridescens, Xenopus tropicalis, Cynops pyrrhogaster, Hynobius chinensis and A. davidianus were obtained from the Genbank
and reassembled except Xenopus tropicalis. The BLAST search of transcriptome data obtained 1244 single-copy
orthologous genes among five species. A phylogenetic tree showed A. davidianus to have the closest relationship to H.
chinensis. Fourteen positively selected genes were detected in A. davidianus and N. vridescens group and fifteen in A.
davidianus and H. chinensis group. Five genes were shared in the both groups which involved in the immune system,
suggesting that A. davidianus adaptation to an aquatic and cave environment required rapid evolution of the immune
system compared to N. viridescens and H. chinensis.
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Background
Amphibians played an important role as a transitional
group linking aquatic to terrestrial in the evolution of verte-
brates [1]. To elucidate evolutionary history, the genome
and mitochondrial DNA are traditionally used to estimate
divergence time [2]. Transcriptome sequencing has become
a viable alternative to provide rapid developing genomic re-
sources in non-model organisms [3, 4]. Comparative tran-
scriptome analysis is used to estimate the non-synonymous
substitution (Ka) and synonymous substitution (Ks) rates to
calculate the evolutionary rate [5, 6] and hence, to identify
genes involved in environmental adaptation. Distribution of
synonymous substitutions can be used to calculate the di-
vergent time based on the coding sequence [2, 7].
The Chinese giant salamander Andrias davidianus is a

typical urodele, and an important species both as a bio-
logical resource and with respect to its value as a living fos-
sil [8]. The species was historically widespread in China, but
environmental degradation and human killing have led to
its severe decline in the wild. From 1980s, it is classified as

endangered by the International Union for Conservation of
Nature and Nature Resources. Because of its irreplaceable
protection status and good taste, artificial propagation tech-
nology was studied and succeeded at the end of 1990s. Suc-
cess of artificial propagation technology provided a value
way to protect the wild resources. In wild, it is aquatic in all
life stages and typically inhabits rocky crevices in banks of
streams and lakes, as well as subterranean rivers. To identify
genes possibly related to A. davidianus adaptation to its
aquatic life history and to a cave habitat, transcriptome data
of other amphibian species were obtained from GenBank,
and comparative transcriptome analysis was carried out to
detect genes positively selected for in evolution.

Methods
RNA extraction and sequencing
Total RNA was extracted from five ovaries and testes using
Trizol reagent (Invitrogen, USA) according manufacturer’s
instructions and treated with RNase-free DNase I (Takara,
China) to remove the genomic DNA, respectively. After
RNA quality and quantity test, RNA was broken into short
fragment, and first-strand cDNA was synthesized, and then
the sequencing adapter was added. The cDNA libraries
were constructed and sequenced on the Illumina
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sequencing platform (Illumina HiSeq™ 2500). All raw reads,
low quality sequences, and reads containing adaptor se-
quences were removed, and the clean reads were obtained.

Identification of orthologues genes and phylogenetic
analysis
Two gonad transcriptome data (SRR3308418 and
SRR3308420) of A. davidianus were provided by my lab. To
expand data of A. davidianus, transcriptome data of skin
(SRX729810) and spleen (SRX729743) were obtained from
NCBI database and reassembled with the gonad transcrip-
tome data. Transcriptome data of N. viridescens from heart,
lens, brain, eye, liver, lung, spleen, kidney, testis, and ovary
(ERR108189), C. pyrrhogaster lens and neural retina
(SRR1051839), H. chinensis whole body (SRR1042328) and
X. tropicalis from genome sequencing (GCA_000004195)
were also obtained. The unigenes were reassembled from
the downloaded raw reads, except for X. tropicalis. The
numbers of unigenes for each species is given in Table 1.
BLASTN software was used to align sequences, with the
cutoff E-value set at 1e-7 [9]. OrthoMCL software was ap-
plied to classify the gene family [10]. Orthologous genes
were obtained, and Venn diagrams were used to obtain the
gene number [11]. The orthologous genes were used to
construct the phylogenetic tree by the NJ method with 1000
bootstrap replications.

Estimate of substitution rates among species
Form the orthologous gene, only one orthologous gene in
other species was classed as single-copy orthologous by
PERL package [12, 13]. The single-copy orthologous genes
were identified to calculate the synonymous substitution
rates (Ks) and non-synonymous rate (Ka). The amino acid
sequences were aligned by Muscle software [14]. The
aligned sequences were converted to corresponding nu-
cleotide sequences. Synonymous substitution rates (Ks)
and non-synonymous rates (Ka) were estimated between
species pairs by sit model under Codeml program in
PAML package [15]. The best threshold was set at 0.5
based on the Ka/Ks value according to previous reports
[5, 6]. Value of two fold log-likelihood difference was used
to perform a Chi-squared test and the difference of the
parameter number was set as the degree in the Chi-
squared. Positively selected sites were allowed when P was
< 0.05 and posterior probability was > 0.95 [16]. A Ka/Ks

value > 1 indicated strong positive selection, from 0.5 to 1
indicated weak positive selection, and a value < 0.1 indi-
cated negative selection.

Results
Orthologue identification and phylogenetic analysis
To identify the phylogenetic relationship among the spe-
cies, large-scale transcriptome characterizations were car-
ried out for N. viridescens, X. tropicalis, C. pyrrhogaster, H.
chinensis, and A. davidianus, and transcriptome data were
downloaded and reassembled (Table 1). Comparative ana-
lysis yielded 4279 gene families and 34,246 putative ortho-
logous genes (Fig.1). To construct the phylogenetic tree
with X. tropicalis as out-group, 1244 single-copy ortholo-
gous genes were identified. The phylogenetic tree showed
A. davidianus to have the closest relationship to H. chi-
nensis, with N. viridescens and C. pyrrhogaster clustered
on one separate branch (Additional file 1: Figure S1).

Evolutionary profile of Andrias davidianus genes
We analyzed the evolutionary pattern of 1244 single-copy
orthologous genes in A. davidianus, H. chinensis, and N.
viridescens. Synonymous (Ks) and non-synonymous (Ka)
substitutions per site were observed (Fig. 2). A majority of
sequence pairs showed a Ka /Ks < 0.5, implying that these
genes involved negative selection. Fifteen rapidly evolving
sequences were identified with Ka/Ks > 0.5 between A.
davidianus and H. chinensis, and 14 such sites were
observed between A. davidianus and N. viridescens
(Additional file 2: Table S1).

Discussion
Next-generation sequencing technology yielded a large
number of sequences at the low cost and provides
more sequences compared to traditional sequencing
methods [17, 18]. Due to the cost and the throughput,
genome-wide detection of the adaptive evolution gene
was performed in many species by next-generation se-
quencing [17, 19]. Comparative phylogenetic analysis
at the genome level improved the precision of evolu-
tionary inference compared to single gene [20]. How-
ever, because of the large genome of the A. davidianus,
evolutionary analysis by comparative genome was hard
to carry out. Transcriptome sequencing was a valuable
way to obtain large-scale sequences without reference

Table 1 Results of the assembly for each study species

Species Transcriptome N50 GC % Max Length bp Min Length bp CDS

Xenopus tropicalis (XT) 22,855 2418 45.21 94,440 114 22,718

Cynops pyrrhogaste (CP) 122,913 1596 44.61 18,379 201 49,986

Notophthalmus viridescens (NV) 31,998 392 44.48 9697 201 17,943

Hynobius chinensis (HC) 103,800 426 47.54 15,293 201 51,362

Andrias davidianus (AD) 85,868 1492 48.61 17,741 201 43,402
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genome [21, 22]. Phylogenetic analysis of transcrip-
tome sequence data exhibited high supported tree top-
ologies in many species [23, 24].
To elucidate the phylogenetic evolution of A. davidianus,

comparative transcriptome analysis was conducted to con-
struct the phylogenetic tree with X. tropicalis as out-group.
To search adaptive gene for aquatic and cave life, molecular
evolution was analyzed among the related species. Syn-
onymous substitution rates (Ks) and non-synonymous sub-
stitution rates (Ka) were calculated according to the

phylogenetic tree by PAML software [15, 25], with the opti-
mal threshold for selecting the positively expressed se-
quence tag (EST) of 0.5 based on previous study [25].
Several positively selected genes were detected. Similar re-
sults were found in topmouth culter Erythroculter ilishae-
formis and zebrafish Danio rerio, in which 38 candidate
genes exhibited signs of positive selection with dN/dS ratios
> 0.5 [6]. Five genes related to the immune system [26–29]
[cystatin-like, oncostatin-M-specific receptor subunit beta
isoform X1(OSMF), exonuclease, cell death regulator Aven,

Fig. 1 Venn diagrams showing the unigenes for comparative transcriptomes. The superscript indicates the protein family and the subscript
indicates the unigenes

Fig. 2 Ka/Ks ratio of 1244 single-copy orthologous genes. a. Ka/Ks distribution in Andrias davidianus and Hynobius chinensis, b. Ka/Ks distribution
in Andrias davidianus and Notophthalmus viridescens. The solid line shows the threshold of Ka/Ks = 1, the dashed line marked the weak positive
selection threshold of Ka/Ks = 0.5, and the short dashed line represented threshold of Ka/Ks = 0.1
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and centromere protein H] were detected in the A. davidia-
nus/H. chinensis and A. davidianus/N. viridescens groups.
Andrias davidianus is aquatic and inhabiting subterranean
rivers and caves while N. viridescens and H. chinensis are
mainly terrestrial and only special stage in water.
Aquatic and cave dwelling organisms generally encounter

more bacteria than do terrestrial animals. Thus, the A.
davidianus immune system should show more rapid muta-
tions, as was confirmed in our investigation. Due to lack of
full-length according to the transcriptome sequencing,
many gene relevant to positive selection was omitted and
Ka/Ks ratio was decreased from normal level [6]. Further
study will be carried out to identify the genes under positive
selection.

Additional files

Additional file 1: Figure S1. Phylogenetic tree of selected species
based on 1244 single-copy orthologous genes. (TIFF 212 kb)

Additional file 2: Table S1. Orthologs gene under positive selection
among species. (DOCX 18 kb)
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