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candidate regions for preaxial polydactyly
II /III in a large Chinese pedigree
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Abstract

Preaxial polydactyly (PPD) is congenital hand malformation characterized by the duplication of digit. Herein, we
scan the genome-wide SNPs for a large Chinese family with PPD-II/III. We employ the refined IBD algorithm to
identify the identity-by-decent (IBD) segments and compare the frequency among the patients and normal
relatives. A total of 72 markers of 0.01 percentile of the permutation are identified as the peak signals. Among of
them, 57markers locate on chromosome 7q36 which is associated with PPD. Further analyses refine the mapping of
candidate region in chromosome 7q36 into two 380 Kb fragments within LMBR1 and SHH respectively. IBD
approach is a suitable method for mapping causal gene of human disease. Target-enrichment sequencing as well
as functional experiments are required to illustrate the pathogenic mechanisms for PPD in the future.
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Main text
Background
Preaxial polydactyly (PPD; OMIM#188740) is character-
ized as complete or partial duplication of the thumb [1].
It is one of the most common congenital deformities [2].
The worldwide incidence of PPD is 1 in 3000 births [3].
The prevalence rate of polydactyly in Chinese ranks
third in birth defects after congenital heart diseases and
central nervous system diseases [4]. Polydactyly has gen-
etic and clinical heterogeneity [2]. The mainstream treat-
ment is resection for excess digits.
A series of efforts have been performed to investigate

the genetic basis for PPD. Zguricas et al. conducted link-
age analysis for Dutch, British, Turkish, Cuban pedigrees
and mapped the candidate region to a 1.9 cM interval
between D7S550 and D7S2423 of 7q36 region [5]. Heus
et al. further refined the candidate region to approxi-
mately 450 Kb including five genes: C7orf2 (i.e. LMBR1),

C7orf3 (i.e. NOM1), C7orf4 (i.e. LINC00244), HLXB9 (i.e.
MNX1) and RNF32 [6] by reconstructed a detailed phys-
ical map using a combination of exon trapping, cDNA
selection, and EST mapping methods. Further evidence
shows that PPD is caused by ectopic expression of SHH
in mice, cats and humans [7]. The zone of polarizing ac-
tivity regulatory sequence (ZRS), performs as the limb-
specific cis-regulator, in controlling the expression of
SHH. ZRS locates within intron 5 of the neighboring
gene LMBR1, which is ~1 Mb upstream from SHH [8].
In a number of cases, mutations of ZRS disturb the ex-
pression of SHH at the anterior limb bud margin and
consequently caused PPD [8–15]. Homozygous deletion
of ZRS can cause limb-specific absence of SHH expres-
sion in the acheiropodia [16]. It actually exists in the
snake species and a limbless newt [17]. Duplication of
ZRS results in Triphalangeal thumb–polysyndactyly syn-
drome (TPTPS; OMIM#174500), that is a subtype of
PPD. It also can lead to syndactyly type IV (SD4;
OMIM#186200) [18].
The common PPD only involves in hands/feet. In

extreme and rare cases, PPD occur both in hands and
feet. To investigate the genetic basis, Li et al. adopted
a candidate gene approach to genotype nine
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microsatellite markers of 7q36 chromosomal region in
a Chinese family with PPD both in hands and feet.
By linkage analysis and haplotype construction, they
located the linked region spanning 1.7 Mb between
D7S2465 and D7D2423 [19]. It includes the 450 kb
candidate region previously identified by Henus [6].
Nevertheless, the other parts of genome is not inves-
tigated yet. Herein, we genotyped genome-wide SNPs
and employed the identity-by-descent (IBD) to refine
the mapping of potential candidate loci for PPD in
the same family.

Methods
Patients
This study has been approved by the internal review
board of Kunming Institute of Zoology, Chinese
Academy of Sciences (SMKX 2012013). The six-
generation pedigree (including 21 patients and 24 nor-
mal relatives) involved in this study has been described
previously in Li et al. [19]. All patients show hexadactyly
of hands and feet. They have been diagnosed by physical
examination & X-ray and assigned as isolated PPD-II on
hand and isolated PPD-III on feet according to Temtamy
and McKusick’s classification [20]. PPD shows autosomal
dominant inheritance in this pedigree.

SNP array
We genotyped 900,015 markers in 45 individual with
HumanOmniZhongHua-8 BeadChip v1.0 (Illumina).
We exported the chip data in accordance with the
reference sequence GRCh37 into PLINK format via
GenomeStudio (Illumina). The markers on mitochon-
drial DNA and sex chromosomes were disregarded.
We adopted a series of quality control strategies [21]
by using PLINK 1.9 [22]. Two individuals with call
rate < 90% were removed. The SNPs with call
rate < 90%, minor allele frequency < 1%, and devi-
ation of Hardy–Weinberg equilibrium (P < 1e-6) were
excluded. After filtering, a total of 595,534 autosomal
SNPs for 43 individuals were utilized in subsequent

Fig. 1 Permutation analysis after filtering out regions with low IBD
sharing. The black line indicates genome-wide threshold and the red
line is the 0.01 percentile of the permutation

Table 1 Genetic variants in the two IBD segments

Gene(7q36)) Position (GRCH37.p13) SNP ID REF ALT P-valve Note

LMBR1 156470537...156685902 156354434 rs1860156 T C 1.00E-06 116 kb upstream of LMBR1

156401455 kgp6282999 C A 1.00E-06 69 kb upstream of LMBR1

156477347 kgp13575466 C A 1.00E-06

156497668 rs10228997 A G 1.00E-06

156526645 rs10224728 T G 1.00E-06

156686101 kgp6457815 C T 1.00E-06 199 bp downstream of LMBR1

156687282 kgp1716770 C T 1.00E-06 1 kb downstream of LMBR1

156716316 kgp3747986 T C 1.00E-06 30 kb downstream of LMBR1

156730688 kgp7566181 T C 1.00E-06 45 kb downstream of LMBR1

SHH 155595558...155604967 155103781 rs13223383 G T 1.00E-06 492 kb upstream of SHH

155,169,143 rs1990808 C T 1.00E-06 426 kb upstream of SHH

155,182,442 kgp9710825 G A 1.00E-06 426 kb upstream of SHH

155716520 rs4716928 C T 1.00E-06 112 kb downstream of SHH

155718241 rs4716930 A C 1.00E-06 113 kb downstream of SHH

155721324 rs11764820 A G 1.00E-06 116 kb downstream of SHH

155721386 rs11769663 G T 1.00E-06 116 kb downstream of SHH

155722231 rs6971588 T G 1.00E-06 117 kb downstream of SHH

155723112 kgp11597900 C T 1.00E-06 118 kb downstream of SHH
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analyses. The data have been deposited into the Gen-
ome Variation Map [23] (GVM000001).

IBD detection
We used BEAGLE 4.0 [24] to phase and impute the
genotype data referring to the pedigree information and
the genetic map of HapMapII [25]. We detected the IBD
segment with the refined IBD in BEAGLE 4.1 [26]. The
IBD segment length shorter than 1 cM and the loga-
rithm of odds (LOD) score under 3 were excluded be-
fore permutation [27]. The threshold of the genome-
wide significance was set to the 0.05 percentile of the
distribution of the permutation p-value.

Results
The length distribution of detected IBD segments approxi-
mates a Pareto distribution (Additional file 1: Figure S1).
The permutation result shows the significant segments
distributing widely across genomes (Fig. 1). When consid-
ering the top 0.01% outliers of signals, we find the peak
signals of 72 SNPs, of which 57 markers locate at 7q36
chromosomal region (Additional file 2: Table S1). We map
the markers into the IBD fragments including LMBR1 and
SHH (Table 1). The minimal IBD segments within LMBR1
and SHH are around 380 Kb, respectively (Additional file
3: Table S2). The IBD segments are more frequently in
patient-patient (ratio; percentage) than normal-normal
(ratio; percentage) (Table 2). We make annotation for the
significant SNPs (Additional file 2: Table S1). All the SNPs
are not haven’t been reported to be associated with PPD
before.

Discussion
Our IBD analyses refine the mapping of the candidate
regions for PPD into two ~380 Kb segments in 7q36
referring to LMBR1 and SHH genes, respectively
(Additional file 3: Table S2). The segment for LMBR1
includes three genes (i.e. LMBR1, NOM1, and RNF32)
and lies within the 450 kb candidate region identified
before [6].Mutations in the ZRS is playing an import-
ant role in the pathogenesis of PPD (Additional file 4:
Table S3). The duplication of ZRS can cause TPTPS
and SD4 [18]. Its role in PPD-II /PPD-III is unclear. In

the previous investigation of the same family, Li et al.
detected no pathogenic mutation in ZRS as well as no
duplication of ZRS [19]. Consequently, the etiology of
this PPD family may be another limb-specific regula-
tory element of SHH gene exists in the noncoding
region.
In addition to the segment of LMBR1, we also identified

a segment of SHH. The SHH gene encodes sonic hedgehog,
a secreted protein, which plays a key role in the limb devel-
opment [28]. The ectopic expression of SHH in the anterior
limb margin can cause PPD in human, in mouse [29],
Hemingway cat [7] and chicken [30]. Recently, Petit et al.
identified a 2 kb deletion occurring about 240 kb upstream
from the SHH promoter in a large family with PPD-
hypertrichosis. They found the 2 kb deletion repress the
transcriptional activity of the SHH promoter in vitro [31]. It
raises a possibility that long range regulation may be an ex-
planation for the PPD. Further target-enrichment sequen-
cing and further functional experiments for LMBR1 and
SHH are required to identify the pathogenic mutation(s).
In summary, we refine the mapping of the candidate

regions for PPD based on high-density genomic SNPs.
The potential candidate mutations are most likely to lo-
cate in LMBR1 and/or SHH gene. It is much improved
compred with previous results [6, 19]. Our study sug-
gests that the IBD approach is a suitable method for
mapping the causal genes of human diseases. Moreover,
as disruptions of topological chromatin domains can re-
sult in limb malformations [32], more attention should
be paid when studying PPD in the future on this aspect.

Additional files

Additional file 1: Figure S1. Plot of the distribution of the IBD
segments.

Additional file 2: Table S1. Top 0.01% peak signals.

Additional file 3: Table S2. IBD segments of LMBR1 and SHH.

Additional file 4: Table S3. Mutations in intron 5 of LMBR1.

Abbreviations
IBD: Identity by descent; LINC00244: Long intergenic non-protein coding RNA
244; LMBR1: Limb development membrane protein 1; MNX1: Motor neuron
and pancreas homeobox 1; NOM1: Nucleolar protein with MIF4G domain 1;
PPD: Preaxial polydactyly; RNF32: Ring finger protein 32

Table 2 Pairwise statistics of LMBR1 and SHH

patient-patient normal-normal patient-normal

Gene No. patient No.IBD in patient
pairs

% IBD in patient
pairs

No. normal No.IBD in normal
pairs

% IBD in normal
pairs

No.IBD in patient-
normal pairs

% IBD in patient-
normal pairs

LMBR1 21 84 0.400 22 17 0.074 29 0.126

SHH 21 81 0.386 22 16 0.069 24 0.104

% IBD patient pairs = IBD patient pairs/case x (case-1)/2
% IBD normal pairs = IBD normal pairs/normal x (normal-1)/2
% IBD patient-normal pairs = IBD patient-normal pairs/case x normal/2
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