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Abstract

Background: With the increasing capacity of present-day next-generation sequencers the field of mitogenomics is
rapidly changing. Enrichment of the mitochondrial fraction, is no longer necessary for obtaining mitogenomic data.
Despite the benefits, shotgun sequencing approaches also have disadvantages. They do not guarantee obtaining
the complete mitogenome, generally require larger amounts of input DNA and coverage is low compared to
sequencing with enrichment strategies. If the mitogenome could be amplified in a single amplification, additional
time and costs for sample preparation might outweigh these disadvantages.

Results: A sequence of the complete mitochondrial genome of the pupilloid landsnail Orcula dolium is presented.
The mitogenome was amplified in a single long-range (LR) PCR and sequenced on an lon Torrent PGM (Life
Technologies). The length is 14,063 nt and the average depth of coverage is 1112 X. This is the first published

mitogenome for a member of the family Orculidae. It has the typical metazoan makeup of 13 protein coding genes
(PCGs), 2 ribosomal RNAs (12S and 16S) and 22 transfer RNAs (tRNAs). Orcula is positioned between Pupilla and the

Vertiginidae as the sister-group of Gastrocopta and Vertigo, together. An ancestral gene order reconstruction shows

that Orthurethra in contrast to other Stylommatophora, have tRNA-H before tRNA-G and that the gene order in the
‘'non-achatinoid’ clade is identical to that of closely related non-stylommatophoran taxa.

Conclusions: We show it is feasible to ultra-deep sequence a mitogenome from a single LR-PCR. This approach is
particularly relevant to studies that have low concentrations of input DNA. It results in a more efficient use of NGS
capacity (only the targeted fraction is sequenced) and is an effective selection against nuclear mitochondrial inserts

(NUMTS). In contrast to previous studies based in particular on 28S, our results indicate that phylogeny
reconstructions based on complete mitogenomes might be more suitable to resolve deep relationships within
Stylommatophora. Ancestral gene order reconstructions reveal rearrangements that characterize systematic groups.
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Background

A recent increase in the number of sequenced mitogen-
omes allows for a better understanding of gastropod
evolution [1-3]. Of the more than sixty mitogenomes
that are currently available for Gastropoda, less than
twenty belong to the Eupulmonata sensu [4], of which
the clade Stylommatophora represents the majority of
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the terrestrial snails. Although the first stylommatophoran
mitogenome was sequenced nearly two decades ago [5], it
took more than 15 years before new mitogenomes were
added to this group on about a yearly basis, as is the case
at present. Complete mitogenomes have been obtained for
18 species of Stylommatophora now (excluding Euhadra
and Orcula; accessed 2016-10-17) (Table 1). These include
representatives of the superfamilies Achatinelloidea,
Clausilloidea, Helicoidea, Orthalicoidea, Pupilloidea,
Succinoidea and Urocoptoidea, or more inclusively the
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Table 1 List of included mitogenomes (accessed 2016-10-17)

Species Length (nt)  GenBank Reference
Stylommatophora
Orthurethra
Achatinella mustelina 16,323 KU525108 [41]
Gastrocopta cristata 14,060 KC185403 [42]
Orcula dolium 14,063 KJ867421 This study
Pupilla muscorum 14,149 KC185404 [42]
Vertigo pusilla 14,078 KC185405 [42]
Sigmurethra
Achatina fulica 15,057 KJ744205 [59]
Aegista aubryana 14,238 NC_029419 [60]
Aegista diversifamilia 14,039 KR002567 [61]
Albinaria caerulea 14,130 NC_001761 [5]
(Deshayes, 1835)
Camaena cicatricosa 13,843 KM365408 [48]
Cernuella virgata 14,147 KR736333 [62]
Cerion incanum 15177 NC_025645 [57]
Cepaea nemoralis 14,100 NC_001816 [63]
Linnaeus, 1758
Cornu aspersum 14,050 NC_021747 [35]
(Mdller, 1774)
Cylindrus obtusus 14610 NC_017872 471
(Draparnaud, 1805)
Dolicheulota 14,237 KR338956 [61]
formosensis
Euhadra herklotsi ? 771693- 271701 [64]
Mastigeulota 14,029 KM083123 [65]
kiangsinensis
Naesiotus nux 15,197 KT821554 [24]
Elasmognatha
Succinea putris 14,092 NC_016190 [3]
Linnaeus, 1758
Basommatophora
Hygrophila
Biomphalaria glabrata 13,670 NC_005439 [66]
Biomphalaria 13,722 NC_010220 [67]
tenagophila
Galba pervia 13,768 NC_018536 [68]
Physella acuta 14,490 JQ390525 [69]
Archaepulmonata
Ellobioidea
Myosotella myosotis 14,246 NC_012434 [70]
Pedipes pedipes 16,708 NC_016179 [3]
Systellomatophora
Rhopalocaulis 14,523 NC_016183 3]
grandidieri

Despite being incomplete, the mitogenome of E. herklotsi was included because
of its relevance to the arrangement of genes within the Helicoidea. The
mitogenome of Radix balthica [71] was excluded because it is poorly annotated
(GenBank accession number HQ330989) and of low quality [68, 69]
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subclades Elasmognatha, Orthurethra, the ‘Limacoid
clade; the informal group Sigmurethra sensu [6] and
the ‘achatinoid clade’ sensu [7]. Here we report the
mitochondrial genome of a fifth orthurethran species,
the first one for the family Orculidae, viz. Orcula
dolium (Drapernaud, 1801). It is the type species of the
genus Orcula Held 1837, which comprises 13 species
featuring ovate—cylindrical shells of 5 to 10 mm height.
Of these, O. dolium shows the widest distribution and
is ecologically most tolerant. Orcula is common in
limestone areas of the Central European Alps and the
Western Carpathians and is usually associated with
mountainous forest habitats and rocky landscapes. Its
altitudinal distribution covers a range from 200 m to
2160 m above sea level [8]. Loess sediments of the
Pannonian Basin (Hungary, Republic of Croatia and
Republic of Serbia) [9-11] and the periphery of the
Western and Eastern Alps [12, 13] show that O. dolium
was also widely distributed throughout glacial periods
of the Late Pleistocene.

Methods

This study was carried out on a specimen of Orcula
dolium dolium (RMNH 114169) collected in 2009 in
SW Berchtesgaden (Bayern, Germany). DNA was ex-
tracted with a Qiagen DNA tissue kit. Total yield of
DNA extracted was ~13 ug (DNA conc. 66.7 ng/ul with
an elution volume of 200 ul). Using universal barcoding
primers [14] a partial sequence (655 nt) of Cytochrome Oxi-
dase subunit I (COI) was obtained using the procedure de-
scribed in [15]. This sequence was used to design specimen
specific primers (Orcula_529 COI_F 5 -CTAAGACTA
TTTGTGTGGTCGATCTTA-3" and Orcula_336_COI R
5-TCTAGACCTAATCAAAAGAACAAATGAAG-3") to
amlify the complete mitogenome of O. dolium. An ampli-
con with a length of 13,871 nt was obtained with GoTaq
long PCR Master Mix (Promega) using the manufac-
turers protocol. Thermocycling profile was 2 m. at
94 °C, followed by 40 cycles of 30 s. at 94 °C, 15 m. at
65 °C, 10 m. at 72 °C. The PCR product was gel puri-
fied with the Wizard SV gel and PCR cleanup-system
(Promega) and subsequently checked on a BioAnalyzer
2100 using a DNA 12000 chip (Agilent). The Orcula
library was part of a combined run in which different
samples were pooled. The purified amplicon was enzy-
matically digested and individual samples were ligated
with a unique Ion Express Barcode Adapter (Life
Technologies) using the NEBNext Fast DNA & Library
Prep Set for Ion Torrent (New England Biolabs), fol-
lowing the manufacturers instructions. After ligation
samples were quantified on the Bioanalyser 2100 using
a DNA High sensitivity chip (Agilent). An equimolair
pool was prepared of the highest possible concentra-
tion. This equimolair pool was diluted according to
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the calculated template dilution factor to target 10—
30% of all positive Ion Sphere Particles. Template
preparation and enrichment was carried out with
the Ion Touch 2 system, using the OT2 400 kit
(Life Technologies), according to the manufactures
protocol (7218RevA0). The enriched Ion Sphere
Particles were prepared for sequencing on a Personal
Genome Machine (PGM) with the Ion PGM 400
Sequencing kit as described in the protocol using a
316v2 chip.

Quality check and assembly

Reads from the Orcula library were separated from the pool
based on their unique barcode tag by the Ion Torrent
Server. Quality was checked using FastQC (http://www.bio
informatics.babraham.ac.uk/projects/fastqc/). Reads shorter
than 35 nt or with a phred score below 28 were re-
moved with Fastx_trimmer (http://hannonlab.cshl.edu/
fastx_toolkit/). A ‘de novo’ assembly was carried out
with Spades v.2.5.1. [16] and reads were mapped
against available orthurethran sequences (KC185403-
05, KU525108) using Geneious v.7.1.7 [17]. Finally ‘de
novo’ contigs larger than 1 kb (for gene order assessment)
and mapping assemblies were merged (see Additional file
1: Figure S1) and used as reference for iterative mapping
(medium sensitivity, no fine tuning, not trimmed before
mapping; other parameters left at default) of the quality
checked reads (again using Geneious v.7.1.7). The reason
for this two-step approach was that the initial ‘de novo’
assembly did not result in a contig of expected length. To
confirm the final assembly (and enclosed gene order) a se-
lection of matching reads (~ten fold downsampling) was
analysed with another assembler, MITObim v. 1.8 [18]
(using the 655 nt COI sequence as seed bait) and with
Spades 2.5.1. [17] again also.

Annotation

The position of the protein coding genes (PCGs) was de-
termined by alignment with available stylommatophoran
mitogenomes (Table 1) and by locating start and stop
codons. The identification of the ribosomal RNAs was
done with BLAST searches. Arwen and Mitos [19] were
used to locate the tRNAs and the secondary structures
were all generated with Arwen [20]. The contig sequence
was annotated in Geneious [17].

Phylogenetic analyses

A prerequisite for understanding (mitochondrial) gene
rearrangements is a robust, well rooted phylogeny. Rep-
resentatives of the clades Hygrophila and Eupulmonata
were selected as outgroup because these taxa are sup-
posed to be closely related to, but not part of the
ingroup [3, 4, 21]. For each of the 13 PCGs alignments
were made with TranslatorX [22]; a program that aligns
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nucleotide sequences based on their corresponding
amino acid translations. Translator X was run with the
MAFFT alignment module [23] and the invertebrate
mitochondrial genetic code; other settings were left at
default. A supposed ‘copy’ of ND4L [24] for Naesiotus
nux (GenBank accession number NC_028553) was ex-
cluded because there are no stylommatophoran homo-
logs known to align it with. Ribosomal genes were
individually aligned in Geneious, again using MAFFT
[23] and conserved datablocks were selected with
Gblocks [25] using default settings. The PCG and ribo-
somal alignments were concatenated in Geneious and
exported as a phylip formatted matrix (27 taxa, 13,419
nucleotides). With 41 datablocks specified (each codon
position and the ribosomal RNAs), PartitionFinder
v.1.1.1 [26] estimated the best partitioning scheme (33
partitions) and nucleotide substitution models. A
Bayesian analysis (two simultaneous MCMC runs 10 M
generations each) was conducted with MrBayes 3.2.3
hosted on the CIPRES Science Gateway [27]. Inspection
of the parameter files with Tracer v.1.5 [28] showed
proper mixing of the MCMC (effective sampling size
values > 200). The first 2500 trees (25% of each tree-
file) were discarded as burnin. Majority rule consensus
trees were visualised and edited in FigTree v.1.4.0 [29].
The procedure was repeated with the amino acid align-
ments (13 datablocks, 4190 amino acids) from Transla-
torX [22]. The estimated partitioning scheme now
consisted of six partitions and the analysis was carried
out with 2.5 M generations to keep computation time
tenable. Nucleotide and amino acid datamatrices were
analysed separately to see if both would yield phyloge-
nies with similar topologies. Abbreviations: BPP =
Bayesian Posterior Probability.

Mitochondrial gene arrangements

An ancestral gene order reconstruction [30] was done
using the Maximum Likelihood Gene Order analysis
(MLGO) web server (http://www.geneorder.org/server.php)
using the phylogeny obtained in the previous step (out-
group reduced to Biomphalaria) as a fixed tree (ie. Small
Parsimony Problem, using SPP option).

Taxonomic implications

For the classification and the nomenclature of the
various taxa, the review by Bouchet and Rocroi [6]
served as the primary starting point. Historic classifi-
cations such as the Pilsbry-Baker system [31, 32] are
not exhaustively discussed. The more recent literature
is dealt with only when it contains additional data.
Ever since the rise of phylogenetic systematics, the in-
crease of more detailed anatomical analyses and in
particular the quickly growing quantity of molecular
data, the classification of the gastropods has been in a
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confusing transitional state. In the monograph of Zilch
[33] for example, published before the rise of phylo-
genetic systematics had started, the classis Gastropoda
is subdivided into the subclasses Prosobranchia and
Euthyneura. The latter subclassis contains the ordines
Basommatophora and Stylommatophora, whereas the
ordo Stylommatophora is further split into the subor-
dines Orthurethra, Heterurethra and Sigmurethra.
Many of these names are still in use, but often not
for exactly the same group of species. Next to the
classical taxonomical categories, new nominal taxa
names were more recently introduced, like ‘clade’ and
‘informal group’. Bouchet et al. [6] for example, in a
recent nomenclatorial monograph on gastropod classifi-
cation and nomenclature, use ‘Informal Group Pulmonata’
as a partial synonym of Zilch’s Euthyneura. The
Orthurethra are accepted by [6] as a ‘Subclade; which is
identical with Zilch’s subordo of that name. There are
many more discrepancies, however. For a more recent
contribution to this subject, see [4]. Here we do not
aim at a summary of the changing and sometimes
conflicting views regarding gastropod phylogeny.

Results

The Ion-Torrent run resulted in 118,854 reads of which
115,412 were retained after trimming with Fastx_trim-
mer. The retained reads were in the length range 35—
313 nt and had an average length of 143.8 nt (sd. 42.8).
Of these 107,569 could be mapped against the merged
reference sequence, resulting in an average coverage of
1112X (min. 208X, max. 2483X; see Fig. 1). The mito-
genome of O. dolium has a length of 14,063 nucleotides,
which is within the known range for Stylommatophora
(13.843 and 16.323 nt for Camaena and Achatinella, re-
spectively) and very similar to that reported for other
Pupilloidea (14,060 and 14,078 nt for Gastrocopta and
Vertigo respectively). Both MITObim v.1.8 [18] and
Spades v.2.5.1 [17] yielded the same length and nucleo-
tide sequence using the downsampled dataset. The AT
content is 66% and skews for AT and GC are —0.084
and 0.043. All 37 common metazoan genes (13 pro-
tein coding genes, two rRNAs and 22 tRNAs) were
recovered. The gene order of PCGs and ribosomal
RNAs was identical to those of most Stylommatophora
(Achatinelloidea and certain Helicoidea excepted). The
distribution of tRNAs was, with one mutational step,
most similar to that of Vertigo and Albinaria. All
tRNAs showed standard cloverleaf secondary struc-
tures except for tRNA-K and tRNA-W which had
missing T-arms and tRNA-S1 which had a D-arm
missing (see Additional file 2: Figure S2). The anno-
tated mitogenome of O. dolium has been deposited in
GenBank (accession number KJ867421).
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Discussion

Selection of outgroup

Recent studies have shown that the traditionally ac-
cepted nominal taxa Pulmonata and Opisthobranchia
are not monophyletic, what necessitated a new classifi-
cation of the Euthyneura [4]. Within that taxon these
authors accept Panpulmonata and Eupulmonata, with
the Stylommatophora belonging to the Eupulmonata.
The Informal Group Basommatophora is assigned to a
paraphyletic group Panpulmonata. Next to the selec-
tion of markers and taxa, outgroup selection strongly
affects our concept of Euthyneuran phylogeny, as is
evident from the literature [1, 3, 4, 21, 34—36]. Despite the
differences, all these studies show that the clades Hygro-
phila (Lymnaeoidea & Planorboidea), Systellommatophora
(Veronicelloidea) and Eupulmonata (Ellobioidea) are
closely related to, but separate from the Stylommatophora
(i.e. these are eligible outgroup taxa).

Gene order

Changes in mitochondrial gene order are common in
gastropods [1, 3, 21]. Among the Stylommatophora how-
ever, the order is rather conserved (Fig. 2). Here most
shifts occur in the arrangement of tRNAs. In the
Stylommatophora PCG rearrangements have only been
recorded in Helicidae (COIll), Aegista (Bradybaenidae;
ND3) and Achatinella (Achatinellidae; COII). Most
transpositions have been observed in the Helicoidea, but
there is a strong bias in available data for that group.

Polarisation

The monophyly of the Stylommatophora has been
shown repeatedly [4, 7, 34, 37] (Fig. 2), but a subdivision
into lower taxa remained problematic. Inclusion of
additional genes or investigation of rare genomic
changes (RGCs), such as changes in mitochondrial
gene order [38] has been suggested [39] to solve this
problem. Mitochondrial gene order data (Fig. 2) together
with the phylogeny (Fig. 3) allowed for a reconstruction of
the ancestral gene order (Fig. 4). Rearrangements that
characterize established systematic groups are dis-
cussed below.

Comparison with existing classifications

The number of Stylommatophora with known mitogen-
omes is still limited, but representatives of most of the
major groups are available now. This allows for a prelim-
inary comparison.

Orthurethra [31]

Initially, Orthurethra was considered a ‘primitive’ group
of Stylommatophora [31, 40]. Molecular analyses showed
however, that the Orthurethra are a more derived taxon
[7, 37]. Bouchet and Rocroi [6] accept five orthurethran
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superfamilies, one of which is the Pupilloidea. Complete
mitogenomic sequences are available only for Achatinel-
loidea [41] and for Pupilloidea, i.e. for Pupillidae and
Vertiginidae [42] and now additionally for Orculidae.

The Orthurethra and the Pupilloidea are both monophy-
letic. The Vertiginidae, represented by Gastrocopta and
Vertigo are the sister-group of the Orculidae (Fig. 2). Re-
cently, Gastrocopta (Gastrocoptinae) was excluded from
the ‘vertiginid’-clade (Vertiginidae), mainly based on 28S
sequence data; that phylogeny [43] showed two clades: one
consisting of Pupilla and Vertigo and another with Orcula
and Gastrocopta, albeit poorly supported. These sister-
group relationships, as well as the exclusion of Gastrocop-
tinae from Vertiginidae are rejected by our data (Fig. 2).

The Clausilioidea, classified in an Informal Group
Sigmurethra [6] and the Orthurethra are sister-groups
(BPP = 1.0; Fig. 2).

In the Orthurethra (and Stylommatophora in general)
most mitochondrial gene rearrangements occurred in
the region between CytB and ATPS8. Except for that re-
gion, the gene order of Pupilloidea is identical to that in
Albinaria (Fig. 2). In the Achatinelloidea a number of
rearrangements was found that are not observed in

Pupilloidea (most prominent is the transposition of the
region tRNA-F_COII_tRNA-YHG; Fig. 2). Both orthure-
thran superfamilies have the gene order tRNA-HG (or at
least tRNA-H before tRNA-G) in which they deviate
from other Stylommatophora (which have tRNA-GH).
We hypothesize that the arrangement tRNA-HG is an
apomorphic character state for the Orthurethra.

The MLGO result predicted tRNA-YHWG as the an-
cestral gene arrangement for Orthurethra (requiring
additional steps for all orthurethrans except Vertigo). Al-
ternatively tRNA-YHGW would have been equally parsi-
monious (also nine steps) and is more likely, given that
tRNA-YHG is observed in Achatinella, Pupilla and Gas-
trocopta. Therefore the latter scenario was adopted in
Fig. 4. In either reconstruction the shift from tRNA-GH
to tRNA-H_before_G must have taken place early in
orthurethran history. Additionaly, for the Pupilloidea,
tRNA-W was transposed independently in Orcula and
Vertigo, tRNA-DC in Pupilla, and tRNA-Q from L-
strand to H-strand in Gastrocopta (Figs. 2 and 4).

The mitogenome of Achatinella mustelina is said to be
“similar to those of other pulmonates” [41]. We assume that
statement refers to gene composition, not gene order,
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Aegista aubryana \ col ]v] 16S ]U[P]A] ND6 ] ND5 ] ND1 ] ND4L ] cytB ]D]C]F] coll ]G]HM ND3 MQM ATP8 ]N] ATP6 ]RIE] 125 MSZJ‘S ND4 lTl coll i/] ND2 ]K‘
Aegista diversifamilia \ col ]v] 16S ]U[P]A] ND6 ] ND5 ] ND1 ] ND4L ] cytB ]D]C]F] coll ]G]H[ i ND3 MQM ATP8 ]N] ATP6 ]RIE] 125 MSZJ‘S ND4 lTl coll i/] ND2 ]K‘
Dolicheulota formosensis [ col [v] 165 [u[P[A] nps [ nos | o1 | npat | oy [o[c[F[ con [6[H[Y] viva]] APs [N atPs [RIE] 125 [mM[ D3 ISQISI Nps |T] cou [T ~noz_ K]
Euhadra herklotsi | _col [v[ 16s [u[p[e] np6 | nps [ np1 [ noae [ cys [p[c[F] con [e[H]| via]] APs N[ atPs [RIE] 125 [mM[ D3 ISQIS'I Nps [T] cou [1] ~noz_ K]
Mastigeulota kiangsinensis | col [v] 16s [u]p[a] npe [ nos | no1 | npar | oys [o[c]F[ con [e[H[Y] via]] AtPs [N AtPs [RIE] 125 [M[ D3 ls‘IST[ Nps [T] coi [T ~o2_ K]
Camaena cicatricosa [ _col [v] 165 [u[P[a] npe [ nos [ no1 | npae | oys [c[F] con [o[v]e[H]w] w|Q[L] AtPs [N ATP6 [RIE[ 125 M ND3 ls‘IST[ Nps [T] coi 1] ~o2_ K]
Cepaea nemoralis | _col [v] 165 L[] npos [p[ nps [ not | npat | oy [o[c[F[ con [v]w[e]H]| H[Q] AP [N[ AtPs [RIE[ 125 [M[ np3 [s{r] com IsT o4 1] no2 K]
Cornu aspersum | _col [v[ 16s [u[a] nps [P] nps | wp1 [ noaL [ cys [o[c[F] con [v[a[e]H] H{Q] AP [N[ AtPs [RIE[ 125 [M[ np3 [s{r] com IsT o4 1] no2 K|
Cylindrus obtusus [ _col [v[ 16s [uTp] npe [A] nps [ npt [ o [ cys [p[c[F] con [v[We[H] H[Q] AP [N[ AtPs [RIE[ 125 [M[ np3 [s{r] com IsT o+ 1] no2 K|
Cernuella virgata | _col [v[ 16s [u[P[o] nps | nps [ wp1 [ noaL [ cys [o[c[f] con [v[u[e[H] H[Q[] AP N[ AtPs [RIE] 125 [M] D3 ls‘IST[ Nps |T] coi [T ~o2_ K]
Cerion incanum \ col ] [P]v] 16S ]U[ ND6 ] ND5 ] ND1 ] ND4L ] cytB ]D]C]F] coll ]Y]W]G]H]QILI ATP8 M ATP6 IRIEI 125 M ND3 lszis'] ND4 lTl colll ill ND2 ]K‘
Naesiotus nux \ col ]v] 16S ]U]P]A] ND6 ] ND5 ] ND1 ] ND4L ] cytB ]D]C]F] coll ]Y]W]G]H H ATP8 M ATP6 IRIEI 125 M ND3 lszis'] ND4 lTl colll ill ND2 ] ‘
Succinea pultris \ col ]v] 16S ]P]U[A] ND6 ] ND5 ] ND1 ] ND4L ] cytB IFID]C] coll ]G]H H ATP8 M ATP6 IRIEI 12S M ND3 ISMWM ND4 lTl colll ill ND2 ]K‘
Gastrocopta cristata [ _col [v] 16s [u[P[A] np6 [ nps | not [ noaL | cys [p[c[F] con [v[H[e ]W]olLl ATPs [N ATPe [R[E] 125 W[ ND3 lszis*] Nps [T] cou ill nD2_ K]
Vertigo pusilla \ col ]v] 16S ]U]P]A] ND6 ] ND5 ] ND1 ] ND4L ] cytB ]D]C]F] coll ] H QH ATP8 l l ATP6 IRIEI 125 M ND3 lszis*] ND4 lTl colll ill ND2 ] ‘
Orcula dolium ‘ col ]v] 16S ]U]P]A] ND6 ] ND5 ] ND1 ] ND4L ] cytB ]D]C]F] coll ]YIWIHGQILI ATP8 l l ATP6 IRIEI 125 M ND3 ISZJS*] ND4 lTl colll ill ND2 ]K‘
Pupilla muscorum \ col ]v] 16S ]U]P]A] ND6 ] ND5 ] ND1 ] ND4L ] cytB ]F] coll ] H ATP8 l l ATP6 IRIEI 125 M ND3 lszis*] ND4 lTl colll ill ND2 ] ‘
Achatinella mustelina | _col V[ 16s_[L[P[A] Nps | Nbs | ND1 | ND4L | cyB ]D]c]WIQl ] atps ] ATP6 [RIE[ 125 IMIF] coll ]v]H[G\Nl ND3 lszls] Np# (T] coi [T ~o2_ K]
Albinaria coerulea | col [v] 16s [LTP[A] nps [ nps [ np1 [ npa [ cyts [o[c[F] con [vWe]H] H[Q[] AP [N AtP6 [RIE] 125 [M] D3 152[51] Nps [T] cou [T ~o2 K]
Achatina fulica | col [v[ 16s [LTA[P[ np6 [ nps [ npt [ o4 [ cyts [p[c[F] con [vwWe]H] H[Q[] APs N[ AtPs [RIE] 125 [M[ D3 152[51] Nps [T] cou [T ~o2_ K]
Biomphalaria glabrata [ col [v] 16s [u[A[P[ npe | nos | o1 | npaL | cys [o[c]F[ con [v[w]e[H H[Q[] AP N[ AtPs [RIE] 125 [M[ D3 152[51] Nps [T] cou [T no2_ K]
Biomphalaria tenagophila | col [v] 16s [L]a[P] nps | nps [ np1 [ noaL [ cys [p[c[F] con [v[ue[H H[Q[] APs [N AtPs [RIE] 125 [M[ D3 152[51] no4 Jr| GO [i no2 K]
Galbapervia | col [v[ 16s [u]p[a] o6 | nps [ mp1 [ noaL [ cys [p[F[ con [v]wc[e[H H[Q[] AP [N AtPs [RIE] 125 [M[ D3 152[51] Nps [T] cou [T ~oz_ K]
Physella acuta \ col ]P[ ND6 ] ND5 ] ND1 ]D] [ coll ]v]w] ND4L ]clol ATPE 1R151 128 1 I I Colll /] ND2 ]KM 165 ]U]A] CytB ]G]HIL’] ATP8 INl ND3 13715'] ND4 ‘
Pedipes pedipes \ col ]v] 16S ]U]A] ] ND6 ] ND5 ] ND1 ] ND4L ] cytB ]D]c]F] coll ]Y]W]G]Hl 1 ATP8 M ATP6 151 125 M ND3 157171 coll I ]R]s] ND4 ]/] ND2 ] ‘
Myosotella myosotis [ _col [v[ 165 []a[P[ np6 | nos [ np1 | cys [o[c[F] con [ nosL [v[w[e]H| {a]t] atPs N[ aTP6 [R[E] 125 [M[ nD3 13713*] ps (7] coil [T ~noz_ K]
Rhopalocaulis grandidieri [ _col [v[ 165 [L]A[P[ o6 | nps [ Np1 | N4 [ cys [o] con ]G]v]lel ATP8 ]EINWUl ATP6 [R] 125 [M[ D3 13713*] Npa |T| coi [T ~noz_ K]
Fig. 2 Mitogenomic gene arrangement of Stylommatophora and Euthyneuran outgroup taxa

because one of the largest transpositions recorded for Sty-
lommatophora is seen in Achatinella. The latter taxon has
transposed tRNA-F_COII_tRNA-YHG (assuming it was not
the larger fragement tRNA-WQL? ATP8-ATP6_tRNA-
RE_12S), tRNA-W and tRNA-N (Figs. 2 and 4).

Heterurethra [31]
The Heterurethra sensu Pilsbry [31] or the subclade
Elasmognatha according to [6] when Athoracophoroidea
are included next to Succineoidea, were classified in a
clade with Acavoidea (Leucotaenius) and Orthalicoidea
(Placostylus) [7, 37], albeit poorly supported. Our ana-
lyses support (BPP =0.92/0.97; Fig. 3) a sister-group re-
lation between Elasmognatha (Succinea: Succineoidea)
and Orthalicoidea (Naesiotus). In agreement with previ-
ous studies [7, 37] our data indicate that Succineoidea
and Orthalicoidea together are the sister-group of the
combined Urocoptoidea and Helicoidea (Fig. 3). Of the
three gene rearrangements within Succinea (Figs. 2 and 4)
none is shared with Naesiotus.

A peculiar feature of Naesiotus nux (genbank access.nr.
KT821554) is a ‘duplication’ of ND4L (positioned between

tRNA-L and tRNA-P; [24]). Since this ‘copy’ (sequence di-
vergence > 60%) was not present in other Stylommato-
phora it could not be included in our analyses. It might
partly explain the increased size of the mitogenome of N.
nux compared to that of other Stylommatophora (Table 1).

Mesurethra [32]
Of this nominal taxon the Cerionidae and Clausiliidae,
which were included by [44], are represented. Earlier stud-
ies showed the polyphyly of this group [7, 37]. Our phyl-
ogeny reconstructions (Fig. 3) also reject the hypothesis of
a close relation between Cerionidae and Clausiliidae.
Recently, Urocoptidae and Cerionidae were shown to
constitute a monophyletic group (based on 28S sequence
data) for which the superfamily Urocoptoidea was intro-
duced [45]. Urocoptoidea and Helicoidea (= Sigmurethra)
are sister-groups (BPP = 1.0; Fig. 3). Vaught [46] classified
only the Clausiloidea as Mesurethra.

Sigmurethra [31]

The Sigmurethra sensu Pilsbry [31] was already shown
to be paraphyletic [7, 37]. Our data reconfirm that Sig-
murethra is not monophyletic (Fig. 3). Bouchet and
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Helicoidea

Cerion Urocoptoidea 0.94
Naesiotus nux Orthalicoidea laesiotus nux

Succinea putri: Succinoidea
0.99 Gastrocopta crist,
Vertigo pusilla Pupilloidea
Orcula dolium
Pupilla muscorul

Achatine Achatinelloidea ustelina

Albinaria caerule: Clausilloidea aria caerulea

Achatina fulica Achatinoidea Achatina fulica

Biomphalaria glabrata Biomphalaria glabrata
Biomphalaria tenagophila Hygrophila Biomphalaria tenagophila

Galba pervia Galba pervia
Physella acuta Physella acuta
Pedipes pedipes Ellobioidea Pedipes pedipes
Myosotella myosotis Myosotella myosotis
Rhopalocaulis grandidieri Veronicelloidea Rhopalocaulis grandidieri

Fig. 3 Bayesian mitogenomic phylogeny reconstructions of Stylommatophora based on nucleotide (feft) and amino acid data (right)
.

W Aegista aubryana
|: Aegista diversifamilia
Dolicheulota formosensis
_: Euhadra herklotsi

Mastigeulota kiangsinensis

C|F| con |D

Camaena cicatricosa

Cepaea nemoralis
T[ coum |
wos_[p| [T 0o [sT wos Cornu aspersum

L'\P| ND6 |[A

Cylindrus obtusus

Cernuella virgata

APV 165 |C] |§|

Cerion incanum

Naesiotus nux

Succinea pultris

Gastrocopta cristata

Vertigo pusilla

Orcula dolium

[LTA]P] EME — Pupl//é muscorum '
[o[e[F]_cor [Meflal] Achatinella mustelina
Albinaria coerulea

Achatina fulica
— Biomphalaria glabrata

| I Biomphalaria tenagophila

Fig. 4 Ancestral (mt) gene order reconstruction for Stylommatophora

.
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Rocroi [6] refer to the this nominal taxon as an ‘Informal
Group; which may remain in use as long as no preferen-
tial alternative has been advocated.

“Achatinoid clade’ [7, 37]

In our analyses, Achatina fulica is the sister-group of the
‘non-Achatinoid’ clade. Stylommatophora (‘Achatinoid’
and ‘non-Achatinoid’ clades) is a monophyletic group
(BPP = 1.0; Fig. 3). The mitogenomic gene arrangement
of Achatina differs from that of the other Stylommato-
phora (Fig. 2), but it is identical to that of the outgroup
genera Biomphalaria and Planorbarius, which are classi-
fied with the Planorboidea of the clade Hygrophila.
Unlike the representatives of the ‘non-Achatinoid clade;,
Achatina has the gene order tRNA-LAP (between 16S
and ND6), which also occurs in more distantly related
outgroups (Pedipes, Mpyosotella and Rhopalocaulis;
Fig. 2). Therefore, using the principle of outgroup com-
parison, we hypothesize that the ancestral mitochondrial
gene order of the Stylommatophora has been identical
to the arrangement currently found in Achatina and in
some taxa of the clade Hygrophila.

‘Non-Achatinoid clade’ [7, 37]

Our data show a strongly supported (BPP =1.0; Fig. 3)
basal split in the ‘non-Achatinoid clade’ with on the one
hand Orthurethra (Achatinelloidea, Pupilloidea) + Clausi-
lioidea and on the other hand Elasmognatha (= Heterure-
thra) + Orthalicoidea + Urocoptoidea + Helicoidea. In the
latter clade Elasmognatha + Orthalicoidea is the sister-
group of Urocoptoidea + Helicoidea.

Rearrangements of PCGs are thus far only observed in
the Helicoidea and Achatinelloidea. Separation of ND6
and NDS5 by a tRNA from the L-P-A region and trans-
position of tRNA-T + COIII might indeed be an apomor-
phy for the Helicidae, as suggested by [47]; the recently
added mitogenome of Cornu aspersum [35] confirms
this. We hypothesize that the gene arrangement tRNA-
GH before tRNA-YW is an apomorphic character state
characterizing Bradybaenidae. The transposition of ND3
is not observed in the other bradybaenids and at the
moment being, is unique to Aegista. The mitogenomic
gene arrangement of Camaenidae might be in between
that of an helicoid ancestor and that of Bradybaenidae;
tRNA-Y is still at the ancestral position, whereas tRNA-
W is already transposed to the ‘bradybaenid’ location
(albeit still on the heavy strand). Wang et al. concluded
that the mitogenomic gene order of Camaena cicatri-
cosa differs from that in other stylommatophores in the
position of COIIl and the tRNA’s C, F, D, G, H and W
[48]. The single transposition of tRNA-D is a more par-
simonious explanation for the first four ‘differences’. The
latter three could subsequently be explained by a single
transposition of tRNA-W after tRNA-GH or the

Page 8 of 10

transposition of tRNA-GH (as a single unit) before
tRNA-W. Movement of two consecutive tRNA'’s as a sin-
gle unit is not uncommon, as is exemplified by tRNA-
YW in Succinea and tRNA-AP in Cerion (Fig. 2).

Camaenidae and Bradybaenidae have been considered
confamilial by Scott [49], whereas both nominal taxa are
paraphyletic according to others [7, 50]. According to our
analyses, Camaenidae and Bradybaenidae form a clade
within the Helicoidea (Fig. 3), leaving no place for a separate
superfamily Camaenoidea, which was accepted by [51, 52].

The mitochondrial gene arrangements of Albinaria
(Clausilioidea) and Naesiotus (Orthalicoidea) are identi-
cal, despite the fact that both taxa belong to different
basal groups within the ‘non-Achatinoid’ clade. We
hypothesize that this is the ancestral mitogenomic gene
order of the ‘non-Achatinoid clade’ and that a rearrange-
ment from tRNA-LAP to tRNA-LPA characterized the
most recent common ancestor of this clade.

On the chosen sequence strategy

Amplification of the complete mitochondrial genome in
a single LR-PCR with target specific primers for the snail
species tested here was straightforward. Nevertheless,
other studies show that full mitogenomic amplifications
can be stochastic [53] and the method will not work
with degraded material. Alternatively the mitochondrial
fraction can be enriched by physical isolation (e.g.
centrifugation in CsCl-gradient; requires significant
amounts of starting material) or by target capture ap-
proaches, in which mitochondrial sequences are isolated
by hybridisation to biotinylated probes [54]. Some stud-
ies abandon mitochondrial enrichment steps entirely
and shotgun sequence (pools of) DNA extracts instead
[41, 47, 55-58]. Each of these methods have their own
strengths and weaknesses. In studies where multiple ex-
tracts are pooled and that do not make use of indexing tags,
additional controls are necessary to check against ‘chimeric’
assemblies (especially when closely related taxa are in-
volved). To this end (and for linking the obtained mitogen-
omes to species or vouchers) multiple ‘bait’ sequences have
to be determined a priori [55, 56, 58]. A mitogenome as-
sembled with pooled DNA from a large number of individ-
uals of the same species [41], is inevitably artificial.
Enrichment of the mitochondrial fraction by LR-PCR (and
labeling using indexing tag sequences) is expensive and po-
tentially time-consuming. With the capacity of current
generation sequencers mitochondrial enrichment strat-
egies might seem outdated. Advantages of the here dem-
onstrated method are that it ensures obtainment of the
complete mitochondrial locus from even minute amounts
of starting material, there are no negative costs associated
with increasing genome sizes (no mitochondrial to nuclear
ratio effect) and it diminishes the risk of erroneoulsy se-
quencing NUMTs.
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Conclusion

This study shows that a complete mitogenome can be
amplified and sequenced with high coverage from a sin-
gle LR-PCR. The approach might be especially relevant
in situations where only small amounts of starting ma-
terial are available. Phylogeny reconstructions based on
entire mitogenomes are promising to resolve deep level
relationships within Stylommatophora, that could not
be resolved using only 28S sequence data. Well sup-
ported groups from previous studies based on ten-fold
less sequence data [7, 37] were reconfirmed. The region
between COII and ATPS8 is apparently a hot spot for
rearrangements in stylommatophoran mitogenomes.
The ‘Achatinoid’ clade is a basal branch in Stylomma-
tophora and has the same mitochondrial gene arrange-
ment as closely related non-Stylommatophoran taxa
(especially from the clade Hygrophila). Rearrange-
ments in mitochondrial gene order can characterize
different stylommatophoran ranks, e.g. (non-) ‘Achatinoid’
clade, Orthurethra, Helicidae and Bradybaenidae.
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